
mmrazor

MMRazor Author

Apr 24, 2023

GET STARTED:

1 Overview 1

2 Installation 5

3 Model Zoo 7

4 Train & Test 9

5 Quantization 17

6 Useful Tools 23

7 Key Concepts 25

8 Development tutorials 59

9 Changelog of v1.x 83

10 Contribute Guide 91

11 Frequently Asked Questions 93

12 mmrazor.engine 95

13 mmrazor.models 97

14 mmrazor.registry 117

15 mmrazor.structures 119

16 mmrazor.utils 123

17 English 125

18 127

19 Indices and tables 129

Python Module Index 131

Index 133

i

ii

CHAPTER

ONE

OVERVIEW

1.1 Why MMRazor

MMRazor is a model compression toolkit for model slimming, which includes 4 mainstream technologies:

• Neural Architecture Search (NAS)

• Pruning

• Knowledge Distillation (KD)

• Quantization

It is a part of the OpenMMLab project. If you want to use it now, please refer to Installation.

1.1.1 Major features:

• Compatibility
MMRazor can be easily applied to various projects in OpenMMLab, due to the similar architecture design of Open-
MMLab as well as the decoupling of slimming algorithms and vision tasks.

• Flexibility
Different algorithms, e.g., NAS, pruning and KD, can be incorporated in a plug-n-play manner to build a more powerful
system.

• Convenience
With better modular design, developers can implement new model compression algorithms with only a few codes, or
even by simply modifying config files.

1

https://openmmlab.com/
https://mmrazor.readthedocs.io/en/main/get_started/installation.html

mmrazor

1.2 Design and Implement

1.2.1 Design

There are 3 layers (Application / Algorithm / Component) in overview design. MMRazor mainly includes both of
Component and Algorithm, while Application consist of some OpenMMLab upstream repos, such as MMClassifi-
cation, MMDetection, MMSegmentation and so on.

Component provides many useful functions for quickly implementing Algorithm. And thanks to OpenMMLab ‘s
powerful and highly flexible config mode and registry mechanism, Algorithm can be conveniently applied to Appli-
cation.
How to apply our lightweight algorithms to some upstream tasks? Please refer to the below.

1.2.2 Implement

In OpenMMLab, implementing vision tasks commonly includes 3 parts (model / dataset / schedule). And just like that,
implementing lightweight model also includes 3 parts (algorithm / dataset / schedule) in MMRazor.

Algorithm consist of architecture and components.

Architecture is similar to model of the upstream repos. You can chose to directly use the original model or cus-
tomize the new model as your architecture according to different tasks. For example, you can directly use ResNet-34
and ResNet-18 of MMClassification to implement some KD algorithms, but in NAS, you may need to customize a
searchable model.

Components consist of various special functions for supporting different lightweight algorithms. They can be directly
used in config because of registered into MMEngine. Thus, you can pick some components you need to quickly
implement your algorithm. For example, you may need mutator / mutable / searchle backbone if you want to
implement a NAS algorithm, and you can pick from distill loss / recorder / delivery / connector if you need
a KD algorithm.

Please refer to the next section for more details about Implement.

2 Chapter 1. Overview

mmrazor

Note: The arg name of algorithm in config is model rather than algorithm in order to get better supports of MMCV
and MMEngine.

1.3 Key concepts

For better understanding and using MMRazor, it is highly recommended to read the following user documents according
to your own needs.

Global
• Algorithm

NAS & Pruning
• Mutator

• Mutable

KD
• Delivery

• Recorder

1.4 User guide

If you want to run mmrazor quickly, you can refer to as the follows.

• Learn about Configs

• Train different types algorithms

• Train with different devices

• Test a model

1.5 Tutorials

We provide the following general tutorials according to some typical requirements. If you want to further use MMRazor,
you can refer to our source code and API Reference.

Tutorial list
• Customize Architectures

• Customize NAS algorithms

• Customize Pruning algorithms

• Customize KD algorithms

• Customize mixed algorithms

• Apply existing algorithms to new tasks

1.3. Key concepts 3

https://mmrazor.readthedocs.io/en/main/advanced_guides/algorithm.html
https://mmrazor.readthedocs.io/en/main/advanced_guides/mutator.html
https://mmrazor.readthedocs.io/en/main/advanced_guides/mutable.html
https://mmrazor.readthedocs.io/en/main/advanced_guides/delivery.html
https://mmrazor.readthedocs.io/en/main/advanced_guides/recorder.html
https://mmrazor.readthedocs.io/en/main/user_guides/1_learn_about_config.html
https://mmrazor.readthedocs.io/en/main/user_guides/2_train_different_types_algorithms.html
https://mmrazor.readthedocs.io/en/main/user_guides/3_train_with_different_devices.html
https://mmrazor.readthedocs.io/en/main/user_guides/4_test_a_model.html
https://mmrazor.readthedocs.io/en/main/advanced_guides/customize_architectures.html
https://mmrazor.readthedocs.io/en/main/advanced_guides/customize_nas_algorithms.html
https://mmrazor.readthedocs.io/en/main/advanced_guides/customize_pruning_algorithms.html
https://mmrazor.readthedocs.io/en/main/advanced_guides/customize_kd_algorithms.html
https://mmrazor.readthedocs.io/en/main/advanced_guides/customize_mixed_algorithms.html
https://mmrazor.readthedocs.io/en/main/advanced_guides/apply_existing_algorithms_to_new_tasks.html

mmrazor

1.6 F&Q

If you encounter some trouble using MMRazor, you can find whether your question has existed in F&Q. If not existed,
welcome to open a Github issue for getting support, we will reply it as soon.

1.7 Get support and contribute back

MMRazor is maintained on the MMRazor Github repository. We collect feedback and new proposals/ideas on Github.
You can:

• Open a GitHub issue for bugs and feature requests.

• Open a pull request to contribute code (make sure to read the contribution guide before doing this).

4 Chapter 1. Overview

https://mmrazor.readthedocs.io/en/main/notes/faq.html
https://github.com/open-mmlab/mmrazor/issues
https://github.com/open-mmlab/mmrazor
https://github.com/open-mmlab/mmrazor/issues
https://github.com/open-mmlab/mmrazor/pulls
https://mmrazor.readthedocs.io/en/main/notes/contribution_guide.html

CHAPTER

TWO

INSTALLATION

2.1 Prerequisites

In this section we demonstrate how to prepare an environment with PyTorch.

MMRazor works on Linux, Windows and macOS. It requires Python 3.6+, CUDA 9.2+ and PyTorch 1.8+.

Note: If you are experienced with PyTorch and have already installed it, just skip this part and jump to the next section.
Otherwise, you can follow these steps for the preparation.

Step 0. Download and install Miniconda from the official website.

Step 1. Create a conda environment and activate it.

conda create --name openmmlab python=3.8 -y
conda activate openmmlab

Step 2. Install PyTorch following official instructions, e.g.

On GPU platforms:

conda install pytorch torchvision -c pytorch

On CPU platforms:

conda install pytorch torchvision cpuonly -c pytorch

2.2 Installation

We recommend that users follow our best practices to install MMRazor.

2.2.1 Best Practices

Step 0. Install MMCV using MIM.

pip install -U openmim
mim install mmengine
mim install "mmcv>=2.0.0"

Step 1. Install MMRazor.

Case a: If you develop and run mmrazor directly, install it from source:

5

https://docs.conda.io/en/latest/miniconda.html
https://pytorch.org/get-started/locally/
https://github.com/open-mmlab/mmcv
https://github.com/open-mmlab/mim

mmrazor

git clone -b main https://github.com/open-mmlab/mmrazor.git
cd mmrazor
pip install -v -e .
'-v' means verbose, or more output
'-e' means installing a project in editable mode,
thus any local modifications made to the code will take effect without reinstallation.

Case b: If you use mmrazor as a dependency or third-party package, install it with pip:

pip install "mmrazor>=1.0.0"

6 Chapter 2. Installation

CHAPTER

THREE

MODEL ZOO

3.1 Baselines

Type Name Link
nas SPOS README.md
nas DARTS README.md
nas DetNAS README.md
pruning AutoSlim README.md
pruning L1-norm README.md
pruning Group Fisher README.md
pruning DMCP README.md
ditill ABLoss README.md
ditill BYOT README.md
ditill DAFL README.md
ditill DFAD README.md
ditill DKD README.md
ditill Factor Transfer README.md
ditill FitNets README.md
ditill KD README.md
ditill OFD README.md
ditill RKD README.md
ditill WSLD README.md
ditill ZSKT README.md
ditill CWD README.md
ditill FBKD README.md
quantization PTQ README.md
quantization QAT README.md
quantization LSQ README.md

7

https://github.com/open-mmlab/mmrazor/tree/main/configs/nas/mmcls/spos
https://github.com/open-mmlab/mmrazor/tree/main/configs/nas/mmcls/darts
https://github.com/open-mmlab/mmrazor/tree/main/configs/nas/mmdet/detnas
https://github.com/open-mmlab/mmrazor/tree/main/configs/pruning/mmcls/autoslim
https://github.com/open-mmlab/mmrazor/tree/main//configs/pruning/mmcls/l1-norm
https://github.com/open-mmlab/mmrazor/tree/main/configs/pruning/base/group_fisher
https://github.com/open-mmlab/mmrazor/tree/main/configs/pruning/mmcls/dmcp
https://github.com/open-mmlab/mmrazor/tree/main/configs/distill/mmcls/abloss
https://github.com/open-mmlab/mmrazor/tree/main/configs/distill/mmcls/byot
https://github.com/open-mmlab/mmrazor/tree/main/configs/distill/mmcls/dafl
https://github.com/open-mmlab/mmrazor/tree/main/configs/distill/mmcls/dfad
https://github.com/open-mmlab/mmrazor/tree/main/configs/distill/mmcls/dkd
https://github.com/open-mmlab/mmrazor/tree/main/configs/distill/mmcls/factor_transfer
https://github.com/open-mmlab/mmrazor/tree/main/configs/distill/mmcls/fitnets
https://github.com/open-mmlab/mmrazor/tree/main/configs/distill/mmcls/kd
https://github.com/open-mmlab/mmrazor/tree/main/configs/distill/mmcls/ofd
https://github.com/open-mmlab/mmrazor/tree/main/configs/distill/mmcls/rkd
https://github.com/open-mmlab/mmrazor/tree/main/configs/distill/mmcls/wsld
https://github.com/open-mmlab/mmrazor/tree/main/configs/distill/mmcls/zskt
https://github.com/open-mmlab/mmrazor/tree/main/configs/distill/mmdet/cwd
https://github.com/open-mmlab/mmrazor/tree/main/configs/distill/mmdet/fbkd
https://github.com/open-mmlab/mmrazor/tree/main/configs/quantization/ptq/base
https://github.com/open-mmlab/mmrazor/tree/main/configs/quantization/qat/base
https://github.com/open-mmlab/mmrazor/tree/main/configs/quantization/qat/lsq

mmrazor

8 Chapter 3. Model Zoo

CHAPTER

FOUR

TRAIN & TEST

4.1 Learn about Configs

4.1.1 Directory structure of configs in mmrazor

mmxxx: means some task repositories of OpenMMLab, such mmcls, mmdet, mmseg and so on.

base: includes configures of datasets, experiment settings and model architectures.

distill/nas/pruning: model compression algorithms.

vanilla: task models owned by mmrazor.

9

mmrazor

4.1.2 More about config

Please refer to config in mmengine.

4.2 Train different types algorithms

Before running our algorithms, you may need to prepare the datasets according to the instructions in the corre-
sponding document.
Note:

• With the help of mmengine, mmrazor unified entered interfaces for various tasks, thus our algorithms will adapt
all OpenMMLab upstream repos in theory.

• We dynamically pass arguments cfg-options (e.g., mutable_cfg in nas algorithm or channel_cfg in pruning
algorithm) to avoid the need for a config for each subnet or checkpoint. If you want to specify different subnets
for retraining or testing, you just need to change this argument.

4.2.1 NAS

Here we take SPOS(Single Path One Shot) as an example. There are three steps to start neural network search(NAS),
including supernet pre-training, search for subnet on the trained supernet and subnet retraining.

Supernet Pre-training

python tools/train.py ${CONFIG_FILE} [optional arguments]

The usage of optional arguments are the same as corresponding tasks like mmclassification, mmdetection and mmseg-
mentation.

For example,

python ./tools/train.py \
configs/nas/mmcls/spos/spos_shufflenet_supernet_8xb128_in1k.py
--work-dir $WORK_DIR

Search for Subnet on The Trained Supernet

python tools/train.py ${CONFIG_FILE} --cfg-options load_from=${CHECKPOINT_PATH}␣
→˓[optional arguments]

For example,

python ./tools/train.py \
configs/nas/mmcls/spos/spos_shufflenet_search_8xb128_in1k.py \
--cfg-options load_from=$STEP1_CKPT \
--work-dir $WORK_DIR

10 Chapter 4. Train & Test

https://github.com/open-mmlab/mmengine/blob/main/docs/zh_cn/tutorials/config.md

mmrazor

Subnet Retraining

python tools/train.py ${CONFIG_FILE} \
--cfg-options algorithm.fix_subnet=${MUTABLE_CFG_PATH} [optional arguments]

• MUTABLE_CFG_PATH: Path of fix_subnet. fix_subnet represents config for mutable of the subnet searched
out, used to specify different subnets for retraining. An example for fix_subnet can be found here, and the
usage can be found here.

For example,

python ./tools/train.py \
configs/nas/mmcls/spos/spos_shufflenet_subnet_8xb128_in1k.py \
--work-dir $WORK_DIR \
--cfg-options algorithm.fix_subnet=$YAML_FILE_BY_STEP2

We note that instead of using --cfg-options, you can also directly modify configs/nas/mmcls/spos/
``spos_shufflenet_subnet_8xb128_in1k``.py like this:

fix_subnet = 'configs/nas/mmcls/spos/SPOS_SHUFFLENETV2_330M_IN1k_PAPER.yaml'
model = dict(fix_subnet=fix_subnet)

4.2.2 Pruning

Pruning has three steps, including supernet pre-training, search for subnet on the trained supernet and subnet
retraining. The commands of the first two steps are similar to NAS, except that we need to use CONFIG_FILE of
Pruning here. The commands of the subnet retraining are as follows.

Subnet Retraining

python tools/train.py ${CONFIG_FILE} --cfg-options model._channel_cfg_paths=${CHANNEL_
→˓CFG_PATH} [optional arguments]

Different from NAS, the argument that needs to be specified here is channel_cfg_paths .

• CHANNEL_CFG_PATH: Path of _channel_cfg_path. channel_cfg represents config for channel of the subnet
searched out, used to specify different subnets for testing.

For example, the default _channel_cfg_paths is set in the config below.

python ./tools/train.py \
configs/pruning/mmcls/autoslim/autoslim_mbv2_1.5x_subnet_8xb256_in1k_flops-530M.py \
--work-dir your_work_dir

4.2. Train different types algorithms 11

https://github.com/open-mmlab/mmrazor/blob/master/configs/nas/spos/SPOS_SHUFFLENETV2_330M_IN1k_PAPER.yaml
https://github.com/open-mmlab/mmrazor/blob/master/configs/nas/spos/README.md#subnet-retraining-on-imagenet

mmrazor

4.2.3 Distillation

There is only one step to start knowledge distillation.

python tools/train.py ${CONFIG_FILE} [optional arguments]

For example,

python ./tools/train.py \
configs/distill/mmcls/kd/kd_logits_r34_r18_8xb32_in1k.py \
--work-dir your_work_dir

4.3 Train with different devices

Note: The default learning rate in config files is for 8 GPUs. If using different number GPUs, the total batch size will
change in proportion, you have to scale the learning rate following new_lr = old_lr * new_ngpus / old_ngpus.
We recommend to use tools/dist_train.sh even with 1 gpu, since some methods do not support non-distributed
training.

4.3.1 Training with CPU

export CUDA_VISIBLE_DEVICES=-1
python tools/train.py ${CONFIG_FILE}

Note: We do not recommend users to use CPU for training because it is too slow and some algorithms are using SyncBN
which is based on distributed training. We support this feature to allow users to debug on machines without GPU for
convenience.

4.3.2 Train with single/multiple GPUs

sh tools/dist_train.sh ${CONFIG_FILE} ${GPUS} --work_dir ${YOUR_WORK_DIR} [optional␣
→˓arguments]

Note: During training, checkpoints and logs are saved in the same folder structure as the config file under work_dirs/.
Custom work directory is not recommended since evaluation scripts infer work directories from the config file name.
If you want to save your weights somewhere else, please use symlink, for example:

ln -s ${YOUR_WORK_DIRS} ${MMRAZOR}/work_dirs

Alternatively, if you run MMRazor on a cluster managed with slurm:

GPUS_PER_NODE=${GPUS_PER_NODE} GPUS=${GPUS} SRUN_ARGS=${SRUN_ARGS} sh tools/xxx/slurm_
→˓train.sh ${PARTITION} ${JOB_NAME} ${CONFIG_FILE} ${YOUR_WORK_DIR} [optional arguments]

12 Chapter 4. Train & Test

https://slurm.schedmd.com/

mmrazor

4.3.3 Train with multiple machines

If you launch with multiple machines simply connected with ethernet, you can simply run the following commands:

On the first machine:

NNODES=2 NODE_RANK=0 PORT=$MASTER_PORT MASTER_ADDR=$MASTER_ADDR sh tools/dist_train.sh
→˓$CONFIG $GPUS

On the second machine:

NNODES=2 NODE_RANK=1 PORT=$MASTER_PORT MASTER_ADDR=$MASTER_ADDR sh tools/dist_train.sh
→˓$CONFIG $GPUS

Usually it is slow if you do not have high speed networking like InfiniBand.

If you launch with slurm, the command is the same as that on single machine described above, but you need refer to
slurm_train.sh to set appropriate parameters and environment variables.

4.3.4 Launch multiple jobs on a single machine

If you launch multiple jobs on a single machine, e.g., 2 jobs of 4-GPU training on a machine with 8 GPUs, you need
to specify different ports (29500 by default) for each job to avoid communication conflict.

If you use dist_train.sh to launch training jobs:

CUDA_VISIBLE_DEVICES=0,1,2,3 PORT=29500 sh tools/xxx/dist_train.sh ${CONFIG_FILE} 4 --
→˓work_dir tmp_work_dir_1
CUDA_VISIBLE_DEVICES=4,5,6,7 PORT=29501 sh tools/xxx/dist_train.sh ${CONFIG_FILE} 4 --
→˓work_dir tmp_work_dir_2

If you use launch training jobs with slurm, you have two options to set different communication ports:

Option 1:

In config1.py:

dist_params = dict(backend='nccl', port=29500)

In config2.py:

dist_params = dict(backend='nccl', port=29501)

Then you can launch two jobs with config1.py and config2.py.

CUDA_VISIBLE_DEVICES=0,1,2,3 GPUS=4 sh tools/slurm_train.sh ${PARTITION} ${JOB_NAME}␣
→˓config1.py tmp_work_dir_1
CUDA_VISIBLE_DEVICES=4,5,6,7 GPUS=4 sh tools/slurm_train.sh ${PARTITION} ${JOB_NAME}␣
→˓config2.py tmp_work_dir_2

Option 2:

You can set different communication ports without the need to modify the configuration file, but have to set the
cfg-options to overwrite the default port in configuration file.

4.3. Train with different devices 13

https://github.com/open-mmlab/mmselfsup/blob/master/tools/slurm_train.sh

mmrazor

CUDA_VISIBLE_DEVICES=0,1,2,3 GPUS=4 sh tools/slurm_train.sh ${PARTITION} ${JOB_NAME}␣
→˓config1.py tmp_work_dir_1 --cfg-options dist_params.port=29500
CUDA_VISIBLE_DEVICES=4,5,6,7 GPUS=4 sh tools/slurm_train.sh ${PARTITION} ${JOB_NAME}␣
→˓config2.py tmp_work_dir_2 --cfg-options dist_params.port=29501

4.4 Test a model

4.4.1 NAS

To test nas method, you can use the following command.

python tools/test.py ${CONFIG_FILE} ${CHECKPOINT_PATH} --cfg-options algorithm.fix_
→˓subnet=${FIX_SUBNET_PATH} [optional arguments]

• FIX_SUBNET_PATH: Path of fix_subnet. fix_subnet represents config for mutable of the subnet searched
out, used to specify different subnets for testing. An example for fix_subnet can be found here.

The usage of optional arguments are the same as corresponding tasks like mmclassification, mmdetection and mmseg-
mentation.

For example,

python tools/test.py \
configs/nas/mmcls/spos/spos_subnet_shufflenetv2_8xb128_in1k.py \
your_subnet_checkpoint_path \
--cfg-options algorithm.fix_subnet=configs/nas/mmcls/spos/SPOS_SHUFFLENETV2_330M_IN1k_

→˓PAPER.yaml

4.4.2 Pruning

Split Checkpoint(Optional)

If you train a slimmable model during retraining, checkpoints of different subnets are actually fused in only one check-
point. You can split this checkpoint to multiple independent checkpoints by using the following command

python tools/model_converters/split_checkpoint.py ${CONFIG_FILE} ${CHECKPOINT_PATH} --
→˓channel-cfgs ${CHANNEL_CFG_PATH} [optional arguments]

• CHANNEL_CFG_PATH: A list of paths of channel_cfg. For example, when you retrain a slimmable model, your
command will be like --cfg-options algorithm.channel_cfg=cfg1,cfg2,cfg3. And your command
here should be --channel-cfgs cfg1 cfg2 cfg3. The order of them should be the same.

For example,

python tools/model_converters/split_checkpoint.py \
configs/pruning/autoslim/autoslim_mbv2_subnet_8xb256_in1k.py \
your_retraining_checkpoint_path \
--channel-cfgs configs/pruning/autoslim/AUTOSLIM_MBV2_530M_OFFICIAL.yaml configs/

→˓pruning/autoslim/AUTOSLIM_MBV2_320M_OFFICIAL.yaml configs/pruning/autoslim/AUTOSLIM_
→˓MBV2_220M_OFFICIAL.yaml

14 Chapter 4. Train & Test

https://github.com/open-mmlab/mmrazor/blob/master/configs/nas/spos/SPOS_SHUFFLENETV2_330M_IN1k_PAPER.yaml

mmrazor

Test

To test pruning method, you can use following command

python tools/test.py ${CONFIG_FILE} ${CHECKPOINT_PATH} --cfg-options model._channel_cfg_
→˓paths=${CHANNEL_CFG_PATH} [optional arguments]

• task: one of mmclsmmdet and mmseg

• CHANNEL_CFG_PATH: Path of channel_cfg. channel_cfg represents config for channel of the subnet
searched out, used to specify different subnets for testing. An example for channel_cfg can be found here,
and the usage can be found here.

For example,

python ./tools/test.py \
configs/pruning/mmcls/autoslim/autoslim_mbv2__1.5x_subnet_8xb256_in1k-530M.py \
your_splitted_checkpoint_path --metrics accuracy

4.4.3 Distillation

To test the distillation method, you can use the following command

python tools/test.py ${CONFIG_FILE} ${CHECKPOINT_PATH} [optional arguments]

For example,

python ./tools/test.py \
configs/distill/mmseg/cwd/cwd_logits_pspnet_r101_d8_pspnet_r18_d8_512x1024_cityscapes_

→˓80k.py \
your_splitted_checkpoint_path --show

4.4. Test a model 15

https://github.com/open-mmlab/mmrazor/blob/master/configs/pruning/autoslim/AUTOSLIM_MBV2_220M_OFFICIAL.yaml
https://github.com/open-mmlab/mmrazor/blob/master/configs/pruning/autoslim/README.md#test-a-subnet

mmrazor

16 Chapter 4. Train & Test

CHAPTER

FIVE

QUANTIZATION

5.1 Quantization

5.1.1 Introduction

MMRazor’s quantization is OpenMMLab’s quantization toolkit, which has got through task models and model deploy-
ment. With its help, we can quantize and deploy pre-trained models in OpenMMLab to specified backend quickly. Of
course, it can also contribute to implementing some custom quantization algorithms easier.

Major features

• Ease of use. Benefited from PyTorch fx, we can quantize our model without modifying the original model, but
with user-friendly config.

• Multiple backends deployment support. Because of the specificity of each backend, a gap in performance
usually exists between before and after deployment. We provided some common backend deployment support
to reduce the gap as much.

• Multiple task repos support. Benefited from OpenMMLab 2.0, our quantization can support all task repos of
OpenMMLab without extra code.

• Be compatible with PyTorch’s core module in quantization. Some core modules in PyTorch can be used
directly in mmrazor, such as Observer, FakeQuantize, BackendConfig and so on.

5.1.2 Quick run

Note: MMRazor’s quantization is based on torch==1.13. Other requirements are the same as MMRazor’s

Model quantization is in mmrazor, but quantized model deployment is in mmdeploy. So we need to the another branches
as follows if we need to delopy our quantized model:

mmdeploy: https://github.com/open-mmlab/mmdeploy/tree/for_mmrazor

Note: If you try to compress mmdet’s models and have used dense_heads, you can use this branch:
https://github.com/HIT-cwh/mmdetection/tree/for_mmrazor to avoid the problem that some code can not be traced
by torch.fx.tracer.

1. Quantize the float model in mmrazor.

17

mmrazor

For QAT (Quantization Aware Training)
python tools/train.py ${CONFIG_PATH} [optional arguments]

For PTQ (Post-training quantization)
python tools/ptq.py ${CONFIG_PATH} [optional arguments]

2. Evaluate the quantized model. (optional)

python tools/test.py ${CONFIG_PATH} ${CHECKPOINT_PATH}

3. Export quantized model to a specific backend in mmdeploy. (required by model deployment)

MODEL_CFG_PATH is the used config in mmrazor.
python ./tools/deploy.py \

${DEPLOY_CFG_PATH} \
${MODEL_CFG_PATH} \
${MODEL_CHECKPOINT_PATH} \
${INPUT_IMG} \
[optional arguments]

This step is the same as how to export an OpenMMLab model to a specific backend. For more details, please refer to
How to convert model

4. Evaluate the quantized backend model. (optional)

python tools/test.py \
${DEPLOY_CFG} \
${MODEL_CFG} \
--model ${BACKEND_MODEL_FILES} \
[optional arguments]

This step is the same as evaluating backend models. For more details, please refer to How to evaluate model

5.1.3 How to quantize your own model quickly

If you want to try quantize your own model quickly, you just need to learn about how to change our provided config.

Case 1: If the model you want to quantize is in our provided configs.
You can refer to the previous chapter Quick Run.

Case 2: If the model you want to quantize is not in our provided configs.
Let us take resnet50 as an example to show how to handle case 2.

base = [
'mmcls::resnet/resnet18_8xb32_in1k.py',
'../../deploy_cfgs/mmcls/classification_openvino_dynamic-224x224.py'

]

val_dataloader = dict(batch_size=32)

test_cfg = dict(
type='mmrazor.PTQLoop',
calibrate_dataloader=val_dataloader,

(continues on next page)

18 Chapter 5. Quantization

https://github.com/open-mmlab/mmdeploy/blob/master/docs/en/02-how-to-run/convert_model.md
https://github.com/open-mmlab/mmdeploy/blob/master/docs/en/02-how-to-run/profile_model.md

mmrazor

(continued from previous page)

calibrate_steps=32,
)

global_qconfig = dict(
w_observer=dict(type='mmrazor.PerChannelMinMaxObserver'),
a_observer=dict(type='mmrazor.MovingAverageMinMaxObserver'),
w_fake_quant=dict(type='mmrazor.FakeQuantize'),
a_fake_quant=dict(type='mmrazor.FakeQuantize'),
w_qscheme=dict(

qdtype='qint8', bit=8, is_symmetry=True, is_symmetric_range=True),
a_qscheme=dict(

qdtype='quint8', bit=8, is_symmetry=True, averaging_constant=0.1),
)

float_checkpoint = 'https://download.openmmlab.com/mmclassification/v0/resnet/resnet18_
→˓8xb32_in1k_20210831-fbbb1da6.pth' # noqa: E501

model = dict(
delete=True,
type='mmrazor.MMArchitectureQuant',
data_preprocessor=dict(

type='mmcls.ClsDataPreprocessor',
num_classes=1000,
RGB format normalization parameters
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
convert image from BGR to RGB
to_rgb=True),

architecture=_base_.model,
deploy_cfg=_base_.deploy_cfg,
float_checkpoint=float_checkpoint,
quantizer=dict(

type='mmrazor.OpenVINOQuantizer',
global_qconfig=global_qconfig,
tracer=dict(

type='mmrazor.CustomTracer',
skipped_methods=[

'mmcls.models.heads.ClsHead._get_loss',
'mmcls.models.heads.ClsHead._get_predictions'

])))

model_wrapper_cfg = dict(type='mmrazor.MMArchitectureQuantDDP',)

This is a config that quantize resnet18 with OpenVINO backend. You just need to modify two args: _base_ and
float_checkpoint.

before
base = ['mmcls::resnet/resnet18_8xb32_in1k.py']
float_checkpoint = 'https://download.openmmlab.com/mmclassification/v0/resnet/resnet18_
→˓8xb32_in1k_20210831-fbbb1da6.pth'

after
(continues on next page)

5.1. Quantization 19

mmrazor

(continued from previous page)

base = ['mmcls::resnet/resnet50_8xb32_in1k.py']
float_checkpoint = 'https://download.openmmlab.com/mmclassification/v0/resnet/resnet50_
→˓8xb32_in1k_20210831-ea4938fc.pth'

• _base_ will be called from mmcls by mmengine, so you can just use mmcls provided configs directly. Other
repos are similar.

• float_checkpoint is a pre-trained float checkpoint by OpenMMLab. You can find it in the corresponding
repo.

After modifying required config, we can use it the same as case 1.

5.1.4 How to improve your quantization performance

If you can not be satisfied with quantization performance by applying our provided configs to your own model, you can
try to improve it with our provided various quantization schemes by modifying global_qconfig.

global_qconfig = dict(
w_observer=dict(type='mmrazor.PerChannelMinMaxObserver'),
a_observer=dict(type='mmrazor.MovingAverageMinMaxObserver'),
w_fake_quant=dict(type='mmrazor.FakeQuantize'),
a_fake_quant=dict(type='mmrazor.FakeQuantize'),
w_qscheme=dict(

qdtype='qint8', bit=8, is_symmetry=True, is_symmetric_range=True),
a_qscheme=dict(

qdtype='quint8', bit=8, is_symmetry=True, averaging_constant=0.1),
)

As shown above, global_qconfig contains server common core args as follows:

• Observes

In forward, they will update the statistics of the observed Tensor. And they should provide a calculate_qparams
function that computes the quantization parameters given the collected statistics.

Note: Whether it is per channel quantization depends on whether PerChannel is in the observer name.

Because mmrazor’s quantization has been compatible with PyTorch’s observers, we can use observers in PyTorch and
our custom observers.

Supported observers list in Pytorch.

FixedQParamsObserver
HistogramObserver
MinMaxObserver
MovingAverageMinMaxObserver
MovingAveragePerChannelMinMaxObserver
NoopObserver
ObserverBase
PerChannelMinMaxObserver
PlaceholderObserver
RecordingObserver

(continues on next page)

20 Chapter 5. Quantization

mmrazor

(continued from previous page)

ReuseInputObserver
UniformQuantizationObserverBase

• Fake quants

In forward, they will update the statistics of the observed Tensor and fake quantize the input. They should also provide
a calculate_qparams function that computes the quantization parameters given the collected statistics.

Because mmrazor’s quantization has been compatible with PyTorch’s fakequants, we can use fakequants in PyTorch
and our custom fakequants.

Supported fakequants list in Pytorch.

FakeQuantize
FakeQuantizeBase
FixedQParamsFakeQuantize
FusedMovingAvgObsFakeQuantize

• Qschemes

Include some basic quantization configurations.

qdtype: to specify whether quantized data type is sign or unsign. It can be chosen from [‘qint8’, ‘quint8’]

Note: If your model need to be deployed, qdtype must be consistent with the dtype in the corresponding backend-
config. Otherwise fakequant will not be inserted in front of the specified OPs.

backendconfigs dir: mmrazor/mmrazor/structures/quantization/backend_config

bit: to specify the quantized data bit. It can be chosen from [1 ~ 16].

is_symmetry: to specify whether to use symmetry quantization. It can be chosen from [True, False]

The specified qscheme is actually implemented by observers, so how to configurate other args needs to be based on the
given observers, such as is_symmetric_range and averaging_constant.

5.1.5 How to customize your quantization algorithm

If you try to customize your quantization algorithm, you can refer to the following link for more details.

Customize Quantization algorithms

5.1. Quantization 21

https://github.com/open-mmlab/mmrazor/blob/quantize/docs/en/advanced_guides/customize_quantization_algorithms.md

mmrazor

22 Chapter 5. Quantization

CHAPTER

SIX

USEFUL TOOLS

please refer to upstream applied repositories’ docs

23

mmrazor

24 Chapter 6. Useful Tools

CHAPTER

SEVEN

KEY CONCEPTS

7.1 Algorithm

7.1.1 Introduction

What is algorithm in MMRazor

MMRazor is a model compression toolkit, which includes 4 mianstream technologies:

• Neural Architecture Search (NAS)

• Pruning

• Knowledge Distillation (KD)

• Quantization (come soon)

And in MMRazor, algorithm is a general item for these technologies. For example, in NAS,

SPOS is an algorithm, CWD is also an algorithm of knowledge distillation.

algorithm is the entrance of mmrazor/models . Its role in MMRazor is the same as both classifier in MMClas-
sification and detector in MMDetection.

About base algorithm

In the directory of models/algorithms, all model compression algorithms are divided into 4 subdirectories: nas /
pruning / distill / quantization. These algorithms must inherit from BaseAlgorithm, whose definition is as below.

from typing import Dict, List, Optional, Tuple, Union
from mmengine.model import BaseModel
from mmrazor.registry import MODELS

LossResults = Dict[str, torch.Tensor]
TensorResults = Union[Tuple[torch.Tensor], torch.Tensor]
PredictResults = List[BaseDataElement]
ForwardResults = Union[LossResults, TensorResults, PredictResults]

@MODELS.register_module()
class BaseAlgorithm(BaseModel):

def __init__(self,
architecture: Union[BaseModel, Dict],

(continues on next page)

25

https://github.com/open-mmlab/mmrazor/blob/master/configs/nas/spos
https://arxiv.org/abs/1904.00420
https://github.com/open-mmlab/mmrazor/blob/master/configs/distill/cwd
https://github.com/open-mmlab/mmclassification
https://github.com/open-mmlab/mmclassification
https://github.com/open-mmlab/mmdetection

mmrazor

(continued from previous page)

data_preprocessor: Optional[Union[Dict, nn.Module]] = None,
init_cfg: Optional[Dict] = None):

......

super().__init__(data_preprocessor, init_cfg)
self.architecture = architecture

def forward(self,
batch_inputs: torch.Tensor,
data_samples: Optional[List[BaseDataElement]] = None,
mode: str = 'tensor') -> ForwardResults:

if mode == 'loss':
return self.loss(batch_inputs, data_samples)

elif mode == 'tensor':
return self._forward(batch_inputs, data_samples)

elif mode == 'predict':
return self._predict(batch_inputs, data_samples)

else:
raise RuntimeError(f'Invalid mode "{mode}". '

'Only supports loss, predict and tensor mode')

def loss(
self,
batch_inputs: torch.Tensor,
data_samples: Optional[List[BaseDataElement]] = None,

) -> LossResults:
"""Calculate losses from a batch of inputs and data samples."""
return self.architecture(batch_inputs, data_samples, mode='loss')

def _forward(
self,
batch_inputs: torch.Tensor,
data_samples: Optional[List[BaseDataElement]] = None,

) -> TensorResults:
"""Network forward process."""
return self.architecture(batch_inputs, data_samples, mode='tensor')

def _predict(
self,
batch_inputs: torch.Tensor,
data_samples: Optional[List[BaseDataElement]] = None,

) -> PredictResults:
"""Predict results from a batch of inputs and data samples with post-
processing."""
return self.architecture(batch_inputs, data_samples, mode='predict')

As you can see from above, BaseAlgorithm is inherited from BaseModel of MMEngine. BaseModel implements
the basic functions of the algorithmic model, such as weights initialize,

batch inputs preprocess (see more information in BaseDataPreprocessor class of MMEngine), parse losses, and
update model parameters. For more details of BaseModel , you can see docs for BaseModel.

26 Chapter 7. Key Concepts

mmrazor

BaseAlgorithm’s forward is just a wrapper of BaseModel’s forward. Sub-classes inherited from BaseAlgorithm only
need to override the loss method, which implements the logic to calculate loss, thus various algorithms can be trained
in the runner.

7.1.2 How to use existing algorithms in MMRazor

1. Configure your architecture that will be slimmed

• Use the model config of other repos of OpenMMLab directly as below, which is an example of setting Faster-
RCNN as our architecture.

base = [
'mmdet::_base_/models/faster_rcnn_r50_fpn.py',

]

architecture = _base_.model

• Use your customized model as below, which is an example of defining a VGG model as our architecture.

Note: How to customize architectures can refer to our tutorial: Customize Architectures.

default_scope='mmcls'
architecture = dict(

type='ImageClassifier',
backbone=dict(type='VGG', depth=11, num_classes=1000),
neck=None,
head=dict(

type='ClsHead',
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
topk=(1, 5),

))

2. Apply the registered algorithm to your architecture.

Note: The arg name of algorithm in config is model rather than algorithm in order to get better supports of MMCV
and MMEngine.

Maybe more args in model need to set according to the used algorithm.

model = dict(
type='BaseAlgorithm',
architecture=architecture)

Note: About the usage of Config, refer to config.md please.

3. Apply some custom hooks or loops to your algorithm. (optional)

• Custom hooks

7.1. Algorithm 27

https://mmrazor.readthedocs.io/en/main/advanced_guides/customize_architectures.html
https://github.com/open-mmlab/mmengine/blob/main/docs/zh_cn/tutorials/config.md

mmrazor

custom_hooks = [
dict(type='NaiveVisualizationHook', priority='LOWEST'),

]

• Custom loops

base = ['./spos_shufflenet_supernet_8xb128_in1k.py']

To chose from ['train_cfg', 'val_cfg', 'test_cfg'] based on your loop type
train_cfg = dict(

delete=True,
type='mmrazor.EvolutionSearchLoop',
dataloader=_base_.val_dataloader,
evaluator=_base_.val_evaluator)

val_cfg = dict()
test_cfg = dict()

7.1.3 How to customize your algorithm

Common pipeline

1. Register a new algorithm

Create a new file mmrazor/models/algorithms/{subdirectory}/xxx.py

from mmrazor.models.algorithms import BaseAlgorithm
from mmrazor.registry import MODELS

@MODELS.register_module()
class XXX(BaseAlgorithm):

def __init__(self, architecture):
super().__init__(architecture)
pass

def loss(self, batch_inputs):
pass

2. Rewrite its loss method.

from mmrazor.models.algorithms import BaseAlgorithm
from mmrazor.registry import MODELS

@MODELS.register_module()
class XXX(BaseAlgorithm):

def __init__(self, architecture):
super().__init__(architecture)
......

def loss(self, batch_inputs):
......
return LossResults

28 Chapter 7. Key Concepts

mmrazor

3. Add the remaining functions of the algorithm

Note: This step is special because of the diversity of algorithms. Some functions of the algorithm may also be
implemented in other files.

from mmrazor.models.algorithms import BaseAlgorithm
from mmrazor.registry import MODELS

@MODELS.register_module()
class XXX(BaseAlgorithm):

def __init__(self, architecture):
super().__init__(architecture)
......

def loss(self, batch_inputs):
......
return LossResults

def aaa(self):
......

def bbb(self):
......

4. Import the class

You can add the following line to mmrazor/models/algorithms/{subdirectory}/__init__.py

from .xxx import XXX

__all__ = ['XXX']

In addition, import XXX in mmrazor/models/algorithms/__init__.py

5. Use the algorithm in your config file.

Please refer to the previous section about how to use existing algorithms in MMRazor

model = dict(
type='XXX',
architecture=architecture)

Pipelines for different algorithms

Please refer to our tutorials about how to customize different algorithms for more details as below.

1. NAS

Customize NAS algorithms

2. Pruning

Customize Pruning algorithms

3. Distill

Customize KD algorithms

7.1. Algorithm 29

https://mmrazor.readthedocs.io/en/main/advanced_guides/customize_nas_algorithms.html
https://mmrazor.readthedocs.io/en/main/advanced_guides/customize_pruning_algorithms.html
https://mmrazor.readthedocs.io/en/main/advanced_guides/customize_kd_algorithms.html

mmrazor

7.2 Mutator

7.2.1 Introduction

What is Mutator

Mutator is one of algorithm components, which provides some useful functions used for mutable management, such
as sample choice, set choicet and so on. With Mutator’s help, you can implement some NAS or pruning algorithms
quickly.

What is the relationship between Mutator and Mutable

In a word, Mutator is the manager of Mutable. Each different type of mutable is commonly managed by their one
correlative mutator, respectively.

As shown in the figure, Mutable is a component of supernet, therefore Mutator can implement some functions about
subnet from supernet by handling Mutable.

30 Chapter 7. Key Concepts

mmrazor

Supported mutators

In MMRazor, we have implemented some mutators, their relationship is as below.

BaseMutator: Base class for all mutators. It has appointed some abstract methods supported by all mutators.

ModuleMuator/ ChannelMutator: Two different types mutators are for handling mutable module and mutable chan-
nel respectively.

Note: Please refer to Mutable for more details about different types of mutable.

OneShotModuleMutator / DiffModuleMutator: Inherit from ModuleMuator, they are for implementing different
types algorithms, such as SPOS, Darts and so on.

OneShotChannelMutator / SlimmableChannelMutator: Inherit from ChannelMutator, they are also for meeting
the needs of different types algorithms, such as AotuSlim.

7.2.2 How to use existing mutators

You just use them directly in configs as below

supernet = dict(
...
)

model = dict(
type='mmrazor.SPOS',

(continues on next page)

7.2. Mutator 31

https://mmrazor.readthedocs.io/en/main/advanced_guides/mutable.html
https://arxiv.org/abs/1904.00420
https://arxiv.org/abs/1806.09055
https://arxiv.org/abs/1903.11728

mmrazor

(continued from previous page)

architecture=supernet,
mutator=dict(type='mmrazor.OneShotModuleMutator'))

If existing mutators do not meet your needs, you can also customize your needed mutator.

7.2.3 How to customize your mutator

All mutators need to implement at least two of the following interfaces

• prepare_from_supernet()

– Make some necessary preparations according to the given supernet. These preparations may include, but
are not limited to, grouping the search space, and initializing mutator with the parameters needed for itself.

• search_groups

– Group of search space.

– Note that search groups and search space are two different concepts. The latter defines what choices can
be used for searching. The former groups the search space, and searchable blocks that are grouped into the
same group will share the same search space and the same sample result.

– # Example
search_space = {op1, op2, op3, op4}
search_group = {0: [op1, op2], 1: [op3, op4]}

There are 4 steps to implement a custom mutator.

1. Registry a new mutator

2. Implement abstract methods

3. Implement other methods

4. Import the class

Then you can use your customized mutator in configs as in the previous chapter.

Let’s use OneShotModuleMutator as an example for customizing mutator.

1.Registry a new mutator

First, you need to determine which type mutator to implement. Thus, you can implement your mutator faster by
inheriting from correlative base mutator.

Then create a new file mmrazor/models/mutators/module_mutator/one_shot_module_mutator, class
OneShotModuleMutator inherits from ModuleMutator.

from mmrazor.registry import MODELS
from .module_mutator import ModuleMutator

@MODELS.register_module()
class OneShotModuleMutator(ModuleMutator):

...

32 Chapter 7. Key Concepts

mmrazor

2. Implement abstract methods

2.1. Rewrite the mutable_class_type property

@MODELS.register_module()
class OneShotModuleMutator(ModuleMutator):

@property
def mutable_class_type(self):

"""One-shot mutable class type.
Returns:

Type[OneShotMutableModule]: Class type of one-shot mutable.
"""
return OneShotMutableModule

2.2. Rewrite search_groups and prepare_from_supernet()

As the prepare_from_supernet() method and the search_groups property are already implemented in the
ModuleMutator and we don’t need to add our own logic, the second step is already over.

If you need to implement them by yourself, you can refer to these as follows.

2.3. Understand search_groups (optional)
Let’s take an example to see what default search_groups do.

from mmrazor.models import OneShotModuleMutator, OneShotMutableModule

class SearchableModel(nn.Module):
def __init__(self, one_shot_op_cfg):

assume `OneShotMutableModule` contains 4 choices:
choice1, choice2, choice3 and choice4
self.choice_block1 = OneShotMutableModule(**one_shot_op_cfg)
self.choice_block2 = OneShotMutableModule(**one_shot_op_cfg)
self.choice_block3 = OneShotMutableModule(**one_shot_op_cfg)

def forward(self, x: Tensor) -> Tensor:
x = self.choice_block1(x)
x = self.choice_block2(x)
x = self.choice_block3(x)

return x

supernet = SearchableModel(one_shot_op_cfg)
mutator1 = OneShotModuleMutator()
build mutator1 from supernet.
mutator1.prepare_from_supernet(supernet)
>>> mutator1.search_groups.keys()
dict_keys([0, 1, 2])

In this case, each OneShotMutableModule will be divided into a group. Thus, the search groups have 3 groups.

If you want to custom group according to your requirement, you can implement it by passing the arg custom_group.

custom_group = [
['op1', 'op2'],

(continues on next page)

7.2. Mutator 33

mmrazor

(continued from previous page)

['op3']
]
mutator2 = OneShotMutator(custom_group)
mutator2.prepare_from_supernet(supernet)

Then choice_block1 and choice_block2 will share the same search space and the same sample result, and
choice_block3 will have its own independent search space. Thus, the search groups have only 2 groups.

>>> mutator2.search_groups.keys()
dict_keys([0, 1])

3. Implement other methods

After finishing some required methods, we need to add some special methods, such as sample_choices and
set_choices.

from typing import Any, Dict

from mmrazor.registry import MODELS
from ...mutables import OneShotMutableModule
from .module_mutator import ModuleMutator

@MODELS.register_module()
class OneShotModuleMutator(ModuleMutator):

def sample_choices(self) -> Dict[int, Any]:
"""Sampling by search groups.
The sampling result of the first mutable of each group is the sampling
result of this group.
Returns:

Dict[int, Any]: Random choices dict.
"""
random_choices = dict()
for group_id, modules in self.search_groups.items():

random_choices[group_id] = modules[0].sample_choice()

return random_choices

def set_choices(self, choices: Dict[int, Any]) -> None:
"""Set mutables' current choice according to choices sample by
:func:`sample_choices`.
Args:

choices (Dict[int, Any]): Choices dict. The key is group_id in
search groups, and the value is the sampling results
corresponding to this group.

"""
for group_id, modules in self.search_groups.items():

choice = choices[group_id]
for module in modules:

module.current_choice = choice

(continues on next page)

34 Chapter 7. Key Concepts

mmrazor

(continued from previous page)

@property
def mutable_class_type(self):

"""One-shot mutable class type.
Returns:

Type[OneShotMutableModule]: Class type of one-shot mutable.
"""
return OneShotMutableModule

4. Import the class

You can either add the following line to mmrazor/models/mutators/module_mutator/__init__.py

from .one_shot_module_mutator import OneShotModuleMutator

__all__ = ['OneShotModuleMutator']

or alternatively add

custom_imports = dict(
imports=['mmrazor.models.mutators.module_mutator.one_shot_module_mutator'],
allow_failed_imports=False)

to the config file to avoid modifying the original code.

Customize OneShotModuleMutator is over, then you can use it directly in your algorithm.

7.3 Mutable

7.3.1 Introduction

What is Mutable

Mutable is one of basic function components in NAS algorithms and some pruning algorithms, which makes supernet
searchable by providing optional modules or parameters.

To understand it better, we take the mutable module as an example to explain as follows.

7.3. Mutable 35

mmrazor

As shown in the figure above, Mutable is a container that holds some candidate operations, thus it can sample candi-
dates to constitute the subnet. Supernet usually consists of multiple Mutable, therefore, Supernetwill be searchable
with the help of Mutable. And all candidate operations in Mutable constitute the search space of SuperNet.

Note: If you want to know more about the relationship between Mutable and Mutator, please refer to Mutator

Features

1. Support module mutable

It is the common and basic function for NAS algorithms. We can use it to implement some classical one-shot NAS
algorithms, such as SPOS, DetNAS and so on.

2. Support parameter mutable

To implement more complicated and funny algorithms easier, we supported making some important parameters search-
able, such as input channel, output channel, kernel size and so on.

What is more, we can implement dynamic op by using mutable parameters.

3. Support deriving from mutable parameter

Because of the restriction of defined architecture, there may be correlations between some mutable parameters, such
as concat and expand ratio.

Note: If conv3 = concat (conv1, conv2)

When out_channel (conv1) = 3, out_channel (conv2) = 4

Then in_channel (conv3) must be 7 rather than mutable.

So use derived mutable from conv1 and conv2 to generate in_channel (conv3)

With the help of derived mutable, we can meet these special requirements in some NAS algorithms and pruning algo-
rithms. What is more, it can be used to deal with different granularity between search spaces.

36 Chapter 7. Key Concepts

https://mmrazor.readthedocs.io/en/main/advanced_guides/mutator.html
https://arxiv.org/abs/1904.00420
https://arxiv.org/abs/1903.10979

mmrazor

Supported mutables

As shown in the figure above.

• White blocks stand the basic classes, which include BaseMutable and DerivedMethodMixin. BaseMutable
is the base class for all mutables, which defines required properties and abstracmethods. DerivedMethodMixin
is a mixin class to provide mutable parameters with some useful methods to derive mutable.

• Gray blocks stand different types of base mutables.

Note: Because there are correlations between channels of some layers, we divide mutable parameters into
MutableChannel and MutableValue, so you can also think MutableChannel is a special MutableValue.

For supporting module and parameters mutable, we provide MutableModule, MutableChannel
and MutableValue these base classes to implement required basic functions. And we also add

7.3. Mutable 37

mmrazor

OneshotMutableModule and DiffMutableModule two types based on MutableModule to meet differ-
ent types of algorithms’ requirements.

For supporting deriving from mutable parameters, we make MutableChannel and MutableValue in-
herit from BaseMutable and DerivedMethodMixin, thus they can get derived functions provided by
DerivedMethodMixin.

• Red blocks and green blocks stand registered classes for implementing some specific algorithms, which means
that you can use them directly in configs. If they do not meet your requirements, you can also customize your
mutable based on our base classes. If you are interested in their realization, please refer to their docstring.

7.3.2 How to use existing mutables to configure searchable backbones

We will use OneShotMutableOP to build a SearchableShuffleNetV2 backbone as follows.

1. Configure needed mutables

we only use OneShotMutableOP, then take 4 ShuffleOP as its candidates.
_STAGE_MUTABLE = dict(

scope='mmrazor',
type='OneShotMutableOP',
candidates=dict(

shuffle_3x3=dict(type='ShuffleBlock', kernel_size=3),
shuffle_5x5=dict(type='ShuffleBlock', kernel_size=5),
shuffle_7x7=dict(type='ShuffleBlock', kernel_size=7),
shuffle_xception=dict(type='ShuffleXception')))

2. Configure the arch_setting of SearchableShuffleNetV2

Use the _STAGE_MUTABLE in various stages.
arch_setting = [

Parameters to build layers. 3 parameters are needed to construct a
layer, from left to right: channel, num_blocks, mutable_cfg.
[64, 4, _STAGE_MUTABLE],
[160, 4, _STAGE_MUTABLE],
[320, 8, _STAGE_MUTABLE],
[640, 4, _STAGE_MUTABLE]

]

3. Configure searchable backbone.

nas_backbone = dict(
scope='mmrazor',
type='SearchableShuffleNetV2',
widen_factor=1.0,
arch_setting=arch_setting)

Then you can use it in your architecture. If existing mutables do not meet your needs, you can also customize your
needed mutable.

38 Chapter 7. Key Concepts

mmrazor

7.3.3 How to customize your mutable

About base mutable

Before customizing mutables, we need to know what some base mutables do.

BaseMutable
In order to implement the searchable mechanism, mutables need to own some base functions, such as changing status
from mutable to fixed, recording the current status and current choice and so on. So in BaseMutable, these relevant
abstract methods and properties will be defined as follows.

Copyright (c) OpenMMLab. All rights reserved.
from abc import ABC, abstractmethod
from typing import Dict, Generic, Optional, TypeVar

from mmengine.model import BaseModule

CHOICE_TYPE = TypeVar('CHOICE_TYPE')
CHOSEN_TYPE = TypeVar('CHOSEN_TYPE')

class BaseMutable(BaseModule, ABC, Generic[CHOICE_TYPE, CHOSEN_TYPE]):

def __init__(self,
alias: Optional[str] = None,
init_cfg: Optional[Dict] = None) -> None:

super().__init__(init_cfg=init_cfg)

self.alias = alias
self._is_fixed = False
self._current_choice: Optional[CHOICE_TYPE] = None

@property
def current_choice(self) -> Optional[CHOICE_TYPE]:

return self._current_choice

@current_choice.setter
def current_choice(self, choice: Optional[CHOICE_TYPE]) -> None:

self._current_choice = choice

@property
def is_fixed(self) -> bool:

return self._is_fixed

@is_fixed.setter
def is_fixed(self, is_fixed: bool) -> None:

......
self._is_fixed = is_fixed

@abstractmethod
def fix_chosen(self, chosen: CHOSEN_TYPE) -> None:
pass

@abstractmethod
(continues on next page)

7.3. Mutable 39

mmrazor

(continued from previous page)

def dump_chosen(self) -> CHOSEN_TYPE:
pass

@property
@abstractmethod
def num_choices(self) -> int:

pass

MutableModule
Inherited from BaseModule, MutableModule not only owns its basic functions, but also needs some specialized
functions to implement module mutable, such as getting all choices, executing forward computation.

Copyright (c) OpenMMLab. All rights reserved.
from abc import abstractmethod
from typing import Any, Dict, List, Optional

from ..base_mutable import CHOICE_TYPE, CHOSEN_TYPE, BaseMutable

class MutableModule(BaseMutable[CHOICE_TYPE, CHOSEN_TYPE]):

def __init__(self,
module_kwargs: Optional[Dict[str, Dict]] = None,
**kwargs) -> None:

super().__init__(**kwargs)

self.module_kwargs = module_kwargs

@property
@abstractmethod
def choices(self) -> List[CHOICE_TYPE]:

"""list: all choices. All subclasses must implement this method."""

@abstractmethod
def forward(self, x: Any) -> Any:

"""Forward computation."""

@property
def num_choices(self) -> int:

"""Number of choices."""
return len(self.choices)

If you want to know more about other types mutables, please refer to their docstring.

40 Chapter 7. Key Concepts

mmrazor

Steps of customizing mutables

There are 4 steps to implement a custom mutable.

1. Registry a new mutable

2. Implement abstract methods.

3. Implement other methods.

4. Import the class

Then you can use your customized mutable in configs as in the previous chapter.

Let’s use OneShotMutableOP as an example for customizing mutable.

1. Registry a new mutable

First, you need to determine which type mutable to implement. Thus, you can implement your mutable faster by
inheriting from correlative base mutable.

Then create a new file mmrazor/models/mutables/mutable_module/one_shot_mutable_module, class
OneShotMutableOP inherits from OneShotMutableModule.

Copyright (c) OpenMMLab. All rights reserved.
import random
from abc import abstractmethod
from typing import Any, Dict, List, Optional, Union

import numpy as np
import torch.nn as nn
from torch import Tensor

from mmrazor.registry import MODELS
from ..base_mutable import CHOICE_TYPE, CHOSEN_TYPE
from .mutable_module import MutableModule

@MODELS.register_module()
class OneShotMutableOP(OneShotMutableModule[str, str]):

...

2. Implement abstract methods

2.1 Basic abstract methods

These basic abstract methods are mainly from BaseMutable and MutableModule, such as fix_chosen,
dump_chosen, choices and num_choices.

@MODELS.register_module()
class OneShotMutableOP(OneShotMutableModule[str, str]):

......

def fix_chosen(self, chosen: str) -> None:
"""Fix mutable with subnet config. This operation would convert

(continues on next page)

7.3. Mutable 41

mmrazor

(continued from previous page)

`unfixed` mode to `fixed` mode. The :attr:`is_fixed` will be set to
True and only the selected operations can be retained.
Args:

chosen (str): the chosen key in ``MUTABLE``. Defaults to None.
"""
if self.is_fixed:

raise AttributeError(
'The mode of current MUTABLE is `fixed`. '
'Please do not call `fix_chosen` function again.')

for c in self.choices:
if c != chosen:

self._candidates.pop(c)

self._chosen = chosen
self.is_fixed = True

def dump_chosen(self) -> str:
assert self.current_choice is not None

return self.current_choice

@property
def choices(self) -> List[str]:

"""list: all choices. """
return list(self._candidates.keys())

@property
def num_choices(self):

return len(self.choices)

2.2 Specified abstract methods

In OneShotMutableModule, sample and forward these required abstract methods are defined, such as
sample_choice, forward_choice, forward_fixed, forward_all. So we need to implement these abstract meth-
ods.

@MODELS.register_module()
class OneShotMutableOP(OneShotMutableModule[str, str]):

......

def sample_choice(self) -> str:
"""uniform sampling."""
return np.random.choice(self.choices, 1)[0]

def forward_fixed(self, x: Any) -> Tensor:
"""Forward with the `fixed` mutable.
Args:

x (Any): x could be a Torch.tensor or a tuple of
Torch.tensor, containing input data for forward computation.

Returns:
(continues on next page)

42 Chapter 7. Key Concepts

mmrazor

(continued from previous page)

Tensor: the result of forward the fixed operation.
"""
return self._candidates[self._chosen](x)

def forward_choice(self, x: Any, choice: str) -> Tensor:
"""Forward with the `unfixed` mutable and current choice is not None.
Args:

x (Any): x could be a Torch.tensor or a tuple of
Torch.tensor, containing input data for forward computation.

choice (str): the chosen key in ``OneShotMutableOP``.
Returns:

Tensor: the result of forward the ``choice`` operation.
"""
assert isinstance(choice, str) and choice in self.choices
return self._candidates[choice](x)

def forward_all(self, x: Any) -> Tensor:
"""Forward all choices. Used to calculate FLOPs.
Args:

x (Any): x could be a Torch.tensor or a tuple of
Torch.tensor, containing input data for forward computation.

Returns:
Tensor: the result of forward all of the ``choice`` operation.

"""
outputs = list()
for op in self._candidates.values():

outputs.append(op(x))
return sum(outputs)

3. Implement other methods

After finishing some required methods, we need to add some special methods, such as _build_ops, because it is
needed in building candidates for sampling.

@MODELS.register_module()
class OneShotMutableOP(OneShotMutableModule[str, str]):

......

@staticmethod
def _build_ops(

candidates: Union[Dict[str, Dict], nn.ModuleDict],
module_kwargs: Optional[Dict[str, Dict]] = None) -> nn.ModuleDict:

"""Build candidate operations based on choice configures.
Args:

candidates (dict[str, dict] | :obj:`nn.ModuleDict`): the configs
for the candidate operations or nn.ModuleDict.

module_kwargs (dict[str, dict], optional): Module initialization
named arguments.

Returns:
ModuleDict (dict[str, Any], optional): the key of ``ops`` is

the name of each choice in configs and the value of ``ops``
(continues on next page)

7.3. Mutable 43

mmrazor

(continued from previous page)

is the corresponding candidate operation.
"""
if isinstance(candidates, nn.ModuleDict):

return candidates

ops = nn.ModuleDict()
for name, op_cfg in candidates.items():

assert name not in ops
if module_kwargs is not None:

op_cfg.update(module_kwargs)
ops[name] = MODELS.build(op_cfg)

return ops

4. Import the class

You can either add the following line to mmrazor/models/mutables/mutable_module/__init__.py

from .one_shot_mutable_module import OneShotMutableModule

__all__ = ['OneShotMutableModule']

or alternatively add

custom_imports = dict(
imports=['mmrazor.models.mutables.mutable_module.one_shot_mutable_module'],
allow_failed_imports=False)

to the config file to avoid modifying the original code.

Customize OneShotMutableOP is over, then you can use it directly in your algorithm.

7.4 Recorder

7.4.1 Introduction of Recorder

Recorder is a context manager used to record various intermediate results during the model forward. It can help
Delivery finish data delivering by recording source data in some distillation algorithms. And it can also be used to
obtain some specific data for visual analysis or other functions you want.

To adapt to more requirements, we implement multiple types of recorders to obtain different types of intermediate
results in MMRazor. What is more, they can be used in combination with the RecorderManager.

In general, Recorderwill help us expand more functions in implementing algorithms by recording various intermediate
results.

44 Chapter 7. Key Concepts

mmrazor

7.4.2 Usage of Recorder

Currently, we support five Recorder, as shown in the following table

Recorder name Description
FunctionOutputsRecorder Record output results of some functions
MethodOutputsRecorder Record output results of some methods
ModuleInputsRecorder Record input results of nn.Module
ModuleOutputsRecorder Record output results of nn.Module
ParameterRecorder Record intermediate parameters of nn.Module

All of the recorders inherit from BaseRecorder. And these recorders can be managed by RecorderManager or just
be used on their own.

Their relationship is shown below.

FunctionOutputsRecorder

FunctionOutputsRecorder is used to record the output results of intermediate function.

Note: When instantiating FunctionOutputsRecorder, you need to pass source argument, which requires
extra attention. For example, anchor_inside_flags is a function in mmdetection to check whether the an-
chors are inside the border. This function is in mmdet/core/anchor/utils.py and used in mmdet/models/
dense_heads/anchor_head. Then the source argument should be mmdet.models.dense_heads.anchor_head.
anchor_inside_flags but not mmdet.core.anchor.utils.anchor_inside_flags.

7.4. Recorder 45

mmrazor

Example

Suppose there is a toy function named toy_func in toy_module.py.

import random
from typing import List
from mmrazor.structures import FunctionOutputsRecorder

def toy_func() -> int:
return random.randint(0, 1000000)

instantiate with specifying used path
r1 = FunctionOutputsRecorder('toy_module.toy_func')

initialize is to make specified module can be recorded by
registering customized forward hook.
r1.initialize()
with r1:

out1 = toy_module.toy_func()
out2 = toy_module.toy_func()
out3 = toy_module.toy_func()

check recorded data
print(r1.data_buffer)

Out:

[75486, 641059, 119729]

Test Correctness of recorded results

data_buffer = r1.data_buffer
print(data_buffer[0] == out1 and data_buffer[1] == out2 and data_buffer[2] == out3)

Out:

True

To get the specific recorded data with get_record_data

print(r1.get_record_data(record_idx=2))

Out:

119729

46 Chapter 7. Key Concepts

mmrazor

MethodOutputsRecorder

MethodOutputsRecorder is used to record the output results of intermediate method.

Example

Suppose there is a toy class Toy and it has a toy method toy_func in toy_module.py.

import random
from mmrazor.core import MethodOutputsRecorder

class Toy():
def toy_func(self):

return random.randint(0, 1000000)

toy = Toy()

instantiate with specifying used path
r1 = MethodOutputsRecorder('toy_module.Toy.toy_func')
initialize is to make specified module can be recorded by
registering customized forward hook.
r1.initialize()

with r1:
out1 = toy.toy_func()
out2 = toy.toy_func()
out3 = toy.toy_func()

check recorded data
print(r1.data_buffer)

Out:

[217832, 353057, 387699]

Test Correctness of recorded results

data_buffer = r1.data_buffer
print(data_buffer[0] == out1 and data_buffer[1] == out2 and data_buffer[2] == out3)

Out:

True

To get the specific recorded data with get_record_data

print(r1.get_record_data(record_idx=2))

Out:

387699

7.4. Recorder 47

mmrazor

ModuleOutputsRecorder and ModuleInputsRecorder

ModuleOutputsRecorder’s usage is similar with ModuleInputsRecorder’s, so we will take the former as an ex-
ample to introduce their usage.

Example

Note:
Different MethodOutputsRecorder and FunctionOutputsRecorder, ModuleOutputsRecorder and
ModuleInputsRecorder are instantiated with module name rather than used path, and executing
initialize need arg: model. Thus, they can know actually the module needs to be recorded.

Suppose there is a toy Module ToyModule in toy_module.py.

import torch
from torch import nn
from mmrazor.core import ModuleOutputsRecorder

class ToyModel(nn.Module):
def __init__(self):

super().__init__()
self.conv1 = nn.Conv2d(1, 1, 1)
self.conv2 = nn.Conv2d(1, 1, 1)

def forward(self, x):
x1 = self.conv1(x)
x2 = self.conv1(x + 1)
return self.conv2(x1 + x2)

model = ToyModel()
instantiate with specifying module name.
r1 = ModuleOutputsRecorder('conv1')

initialize is to make specified module can be recorded by
registering customized forward hook.
r1.initialize(model)

x = torch.randn(1, 1, 1, 1)
with r1:

out = model(x)

print(r1.data_buffer)

Out:

[tensor([[[[0.0820]]]], grad_fn=<ThnnConv2DBackward0>), tensor([[[[-0.0894]]]], grad_fn=
→˓<ThnnConv2DBackward0>)]

Test Correctness of recorded results

48 Chapter 7. Key Concepts

mmrazor

print(torch.equal(r1.data_buffer[0], model.conv1(x)))
print(torch.equal(r1.data_buffer[1], model.conv1(x + 1)))

Out:

True
True

ParameterRecorder

ParameterRecorder is used to record the intermediate parameter of nn.Module. Its usage is similar to
ModuleOutputsRecorder’s and ModuleInputsRecorder’s, but it instantiates with parameter name instead of mod-
ule name.

Example

Suppose there is a toy Module ToyModule in toy_module.py.

from torch import nn
import torch
from mmrazor.core import ModuleOutputsRecorder

class ToyModel(nn.Module):
def __init__(self):

super().__init__()
self.toy_conv = nn.Conv2d(1, 1, 1)

def forward(self, x):
return self.toy_conv(x)

model = ToyModel()
instantiate with specifying parameter name.
r1 = ParameterRecorder('toy_conv.weight')
initialize is to make specified module can be recorded by
registering customized forward hook.
r1.initialize(model)

print(r1.data_buffer)

Out:

[Parameter containing: tensor([[[[0.2971]]]], requires_grad=True)]

Test Correctness of recorded results

print(torch.equal(r1.data_buffer[0], model.toy_conv.weight))

Out:

True

7.4. Recorder 49

mmrazor

RecorderManager

RecorderManager is actually context manager, which can be used to manage various types of recorders.

With the help of RecorderManager, we can manage several different recorders with as little code as possible, which
reduces the possibility of errors.

Example

Suppose there is a toy class Toy owned has a toy method toy_func in toy_module.py.

import random
from torch import nn
from mmrazor.core import RecorderManager

class Toy():
def toy_func(self):

return random.randint(0, 1000000)

class ToyModel(nn.Module):
def __init__(self):

super().__init__()
self.conv1 = nn.Conv2d(1, 1, 1)
self.conv2 = nn.Conv2d(1, 1, 1)
self.toy = Toy()

def forward(self, x):
return self.conv2(self.conv1(x)) + self.toy.toy_func()

configure multi-recorders
conv1_rec = ConfigDict(type='ModuleOutputs', source='conv1')
conv2_rec = ConfigDict(type='ModuleOutputs', source='conv2')
func_rec = ConfigDict(type='MethodOutputs', source='toy_module.Toy.toy_func')
instantiate RecorderManager with a dict that contains recorders' configs,
you can customize their keys.
manager = RecorderManager(

{'conv1_rec': conv1_rec,
'conv2_rec': conv2_rec,
'func_rec': func_rec})

model = ToyModel()
initialize is to make specified module can be recorded by
registering customized forward hook.
manager.initialize(model)

x = torch.rand(1, 1, 1, 1)
with manager:

out = model(x)

conv2_out = manager.get_recorder('conv2_rec').get_record_data()
print(conv2_out)

Out:

50 Chapter 7. Key Concepts

mmrazor

tensor([[[[0.5543]]]], grad_fn=<ThnnConv2DBackward0>)

Display output of toy_func

func_out = manager.get_recorder('func_rec').get_record_data()
print(func_out)

Out:

313167

7.5 Delivery

7.5.1 Introduction of Delivery

Delivery is a mechanism used in knowledge distillation, which is to align the intermediate results between the
teacher model and the student model by delivering and rewriting these intermediate results between them. As shown
in the figure below, deliveries can be used to:

• Deliver the output of a layer of the teacher model directly to a layer of the student model. In some knowledge
distillation algorithms, we may need to deliver the output of a layer of the teacher model to the student model
directly. For example, in LAD algorithm, the student model needs to obtain the label assignment of the teacher
model directly.

• Align the inputs of the teacher model and the student model. For example, in the MMClassification frame-
work, some widely used data augmentations such as mixup and CutMix are not implemented in Data Pipelines
but in forward_train, and due to the randomness of these data augmentation methods, it may lead to a gap
between the input of the teacher model and the student model.

7.5. Delivery 51

https://arxiv.org/abs/2108.10520
https://arxiv.org/abs/1710.09412
https://arxiv.org/abs/1905.04899

mmrazor

In general, the delivery mechanism allows us to deliver intermediate results between the teacher model and the student
model without adding additional code, which reduces the hard coding in the source code.

7.5.2 Usage of Delivery

Currently, we support two deliveries: FunctionOutputsDelivery and MethodOutputsDelivery, both of which
inherit from DistillDiliver. And these deliveries can be managed by DistillDeliveryManager or just be used
on their own.

Their relationship is shown below.

52 Chapter 7. Key Concepts

mmrazor

FunctionOutputsDelivery

FunctionOutputsDelivery is used to align the function’s intermediate results between the teacher model and the
student model.

Note: When initializing FunctionOutputsDelivery, you need to pass func_path argument, which requires
extra attention. For example, anchor_inside_flags is a function in mmdetection to check whether the an-
chors are inside the border. This function is in mmdet/core/anchor/utils.py and used in mmdet/models/
dense_heads/anchor_head. Then the func_path should be mmdet.models.dense_heads.anchor_head.
anchor_inside_flags but not mmdet.core.anchor.utils.anchor_inside_flags.

7.5. Delivery 53

mmrazor

Case 1: Delivery single function’s output from the teacher to the student.

import random
from mmrazor.core import FunctionOutputsDelivery

def toy_func() -> int:
return random.randint(0, 1000000)

delivery = FunctionOutputsDelivery(max_keep_data=1, func_path='toy_module.toy_func')

override_data is False, which means that not override the data with
the recorded data. So it will get the original output of toy_func
in teacher model, and it is also recorded to be deliveried to the student.
delivery.override_data = False
with delivery:

output_teacher = toy_module.toy_func()

override_data is True, which means that override the data with
the recorded data, so it will get the output of toy_func
in teacher model rather than the student's.
delivery.override_data = True
with delivery:

output_student = toy_module.toy_func()

print(output_teacher == output_student)

Out:

True

Case 2: Delivery multi function’s outputs from the teacher to the student.

If a function is executed more than once during the forward of the teacher model, all the outputs of this function will
be used to override function outputs from the student model

Note: Delivery order is first-in first-out.

delivery = FunctionOutputsDelivery(
max_keep_data=2, func_path='toy_module.toy_func')

delivery.override_data = False
with delivery:

output1_teacher = toy_module.toy_func()
output2_teacher = toy_module.toy_func()

delivery.override_data = True
with delivery:

output1_student = toy_module.toy_func()
output2_student = toy_module.toy_func()

(continues on next page)

54 Chapter 7. Key Concepts

mmrazor

(continued from previous page)

print(output1_teacher == output1_student and output2_teacher == output2_student)

Out:

True

MethodOutputsDelivery

MethodOutputsDelivery is used to align the method’s intermediate results between the teacher model and the stu-
dent model.

Case: Align the inputs of the teacher model and the student model

Here we use mixup as an example to show how to align the inputs of the teacher model and the student model.

• Without Delivery

main.py
from mmcls.models.utils import Augments
from mmrazor.core import MethodOutputsDelivery

augments_cfg = dict(type='BatchMixup', alpha=1., num_classes=10, prob=1.0)
augments = Augments(augments_cfg)

imgs = torch.randn(2, 3, 32, 32)
label = torch.randint(0, 10, (2,))

imgs_teacher, label_teacher = augments(imgs, label)
imgs_student, label_student = augments(imgs, label)

print(torch.equal(label_teacher, label_student))
print(torch.equal(imgs_teacher, imgs_student))

Out:

False
False
from mmcls.models.utils import Augments
from mmrazor.core import DistillDeliveryManager

The results are different due to the randomness of mixup.

• With Delivery

delivery = MethodOutputsDelivery(
max_keep_data=1, method_path='mmcls.models.utils.Augments.__call__')

delivery.override_data = False
with delivery:

imgs_teacher, label_teacher = augments(imgs, label)
(continues on next page)

7.5. Delivery 55

mmrazor

(continued from previous page)

delivery.override_data = True
with delivery:

imgs_student, label_student = augments(imgs, label)

print(torch.equal(label_teacher, label_student))
print(torch.equal(imgs_teacher, imgs_student))

Out:

True
True

The randomness is eliminated by using MethodOutputsDelivery.

2.3 DistillDeliveryManager

DistillDeliveryManager is actually a context manager, used to manage delivers. When entering the
DistillDeliveryManager, all delivers managed will be started.

With the help of DistillDeliveryManager, we are able to manage several different DistillDeliveries with as little
code as possible, thereby reducing the possibility of errors.

Case: Manager deliveries with DistillDeliveryManager

from mmcls.models.utils import Augments
from mmrazor.core import DistillDeliveryManager

augments_cfg = dict(type='BatchMixup', alpha=1., num_classes=10, prob=1.0)
augments = Augments(augments_cfg)

distill_deliveries = [
ConfigDict(type='MethodOutputs', max_keep_data=1,

method_path='mmcls.models.utils.Augments.__call__')]

instantiate DistillDeliveryManager
manager = DistillDeliveryManager(distill_deliveries)

imgs = torch.randn(2, 3, 32, 32)
label = torch.randint(0, 10, (2,))

manager.override_data = False
with manager:

imgs_teacher, label_teacher = augments(imgs, label)

manager.override_data = True
with manager:

imgs_student, label_student = augments(imgs, label)

print(torch.equal(label_teacher, label_student))
print(torch.equal(imgs_teacher, imgs_student))

56 Chapter 7. Key Concepts

mmrazor

Out:

True
True

7.5.3 Reference

[1] Zhang, Hongyi, et al. “mixup: Beyond empirical risk minimization.” arXiv abs/1710.09412 (2017).

[2] Yun, Sangdoo, et al. “Cutmix: Regularization strategy to train strong classifiers with localizable features.” ICCV
(2019).

[3] Nguyen, Chuong H., et al. “Improving object detection by label assignment distillation.” WACV (2022).

7.5. Delivery 57

mmrazor

58 Chapter 7. Key Concepts

CHAPTER

EIGHT

DEVELOPMENT TUTORIALS

8.1 Customize Architectures

Different from other tasks, architectures in MMRazor may consist of some special model components, such as search-
able backbones, connectors, dynamic ops. In MMRazor, you can not only develop some common model components
like other codebases of OpenMMLab, but also develop some special model components. Here is how to develop search-
able model components and common model components.

8.1.1 Develop searchable model components

1. Define a new backbone

Create a new file mmrazor/models/architectures/backbones/searchable_shufflenet_v2.py, class
SearchableShuffleNetV2 inherits from BaseBackBone of mmcls, which is the codebase that you will use to build
the model.

Copyright (c) OpenMMLab. All rights reserved.
import copy
from typing import Dict, List, Optional, Sequence, Tuple, Union

import torch.nn as nn
from mmcls.models.backbones.base_backbone import BaseBackbone
from mmcv.cnn import ConvModule, constant_init, normal_init
from mmcv.runner import ModuleList, Sequential
from torch import Tensor
from torch.nn.modules.batchnorm import _BatchNorm

from mmrazor.registry import MODELS

@MODELS.register_module()
class SearchableShuffleNetV2(BaseBackbone):

def __init__(self,):
pass

def _make_layer(self, out_channels, num_blocks, stage_idx):
pass

def _freeze_stages(self):
pass

(continues on next page)

59

mmrazor

(continued from previous page)

def init_weights(self):
pass

def forward(self, x):
pass

def train(self, mode=True):
pass

2. Build the architecture of the new backbone based on arch_setting

@MODELS.register_module()
class SearchableShuffleNetV2(BaseBackbone):

def __init__(self,
arch_setting: List[List],
stem_multiplier: int = 1,
widen_factor: float = 1.0,
out_indices: Sequence[int] = (4,),
frozen_stages: int = -1,
with_last_layer: bool = True,
conv_cfg: Optional[Dict] = None,
norm_cfg: Dict = dict(type='BN'),
act_cfg: Dict = dict(type='ReLU'),
norm_eval: bool = False,
with_cp: bool = False,
init_cfg: Optional[Union[Dict, List[Dict]]] = None) -> None:

layers_nums = 5 if with_last_layer else 4
for index in out_indices:

if index not in range(0, layers_nums):
raise ValueError('the item in out_indices must in '

f'range(0, 5). But received {index}')

self.frozen_stages = frozen_stages
if frozen_stages not in range(-1, layers_nums):

raise ValueError('frozen_stages must be in range(-1, 5). '
f'But received {frozen_stages}')

super().__init__(init_cfg)

self.arch_setting = arch_setting
self.widen_factor = widen_factor
self.out_indices = out_indices
self.conv_cfg = conv_cfg
self.norm_cfg = norm_cfg
self.act_cfg = act_cfg
self.norm_eval = norm_eval
self.with_cp = with_cp

last_channels = 1024
self.in_channels = 16 * stem_multiplier

(continues on next page)

60 Chapter 8. Development tutorials

mmrazor

(continued from previous page)

build the first layer
self.conv1 = ConvModule(

in_channels=3,
out_channels=self.in_channels,
kernel_size=3,
stride=2,
padding=1,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg,
act_cfg=act_cfg)

build the middle layers
self.layers = ModuleList()
for channel, num_blocks, mutable_cfg in arch_setting:

out_channels = round(channel * widen_factor)
layer = self._make_layer(out_channels, num_blocks,

copy.deepcopy(mutable_cfg))
self.layers.append(layer)

build the last layer
if with_last_layer:

self.layers.append(
ConvModule(

in_channels=self.in_channels,
out_channels=last_channels,
kernel_size=1,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg,
act_cfg=act_cfg))

3. Implement_make_layer with mutable_cfg

@MODELS.register_module()
class SearchableShuffleNetV2(BaseBackbone):

...

def _make_layer(self, out_channels: int, num_blocks: int,
mutable_cfg: Dict) -> Sequential:

"""Stack mutable blocks to build a layer for ShuffleNet V2.
Note:

Here we use ``module_kwargs`` to pass dynamic parameters such as
``in_channels``, ``out_channels`` and ``stride``
to build the mutable.

Args:
out_channels (int): out_channels of the block.
num_blocks (int): number of blocks.
mutable_cfg (dict): Config of mutable.

Returns:
mmcv.runner.Sequential: The layer made.

"""
layers = []

(continues on next page)

8.1. Customize Architectures 61

mmrazor

(continued from previous page)

for i in range(num_blocks):
stride = 2 if i == 0 else 1

mutable_cfg.update(
module_kwargs=dict(

in_channels=self.in_channels,
out_channels=out_channels,
stride=stride))

layers.append(MODELS.build(mutable_cfg))
self.in_channels = out_channels

return Sequential(*layers)

...

4. Implement other common methods

You can refer to the implementation of ShuffleNetV2 in mmcls for finishing other common methods.

5. Import the module

You can either add the following line to mmrazor/models/architectures/backbones/__init__.py

from .searchable_shufflenet_v2 import SearchableShuffleNetV2

__all__ = ['SearchableShuffleNetV2']

or alternatively add

custom_imports = dict(
imports=['mmrazor.models.architectures.backbones.searchable_shufflenet_v2'],
allow_failed_imports=False)

to the config file to avoid modifying the original code.

6. Use the backbone in your config file

architecture = dict(
type=xxx,
model=dict(

...
backbone=dict(

type='mmrazor.SearchableShuffleNetV2',
arg1=xxx,
arg2=xxx),

...

62 Chapter 8. Development tutorials

mmrazor

8.1.2 Develop common model components

Here we show how to add a new backbone with an example of xxxNet.

1. Define a new backbone

Create a new file mmrazor/models/architectures/backbones/xxxnet.py, then implement the class xxxNet.

from mmengine.model import BaseModule
from mmrazor.registry import MODELS

@MODELS.register_module()
class xxxNet(BaseModule):

def __init__(self, arg1, arg2, init_cfg=None):
super().__init__(init_cfg=init_cfg)
pass

def forward(self, x):
pass

2. Import the module

You can either add the following line to mmrazor/models/architectures/backbones/__init__.py

from .xxxnet import xxxNet

__all__ = ['xxxNet']

or alternatively add

custom_imports = dict(
imports=['mmrazor.models.architectures.backbones.xxxnet'],
allow_failed_imports=False)

to the config file to avoid modifying the original code.

3. Use the backbone in your config file

architecture = dict(
type=xxx,
model=dict(

...
backbone=dict(

type='xxxNet',
arg1=xxx,
arg2=xxx),

...

How to add other model components is similar to backbone’s. For more details, please refer to other codebases’ docs.

8.1. Customize Architectures 63

mmrazor

8.2 Customize NAS algorithms

Here we show how to develop new NAS algorithms with an example of SPOS.

1. Register a new algorithm

Create a new file mmrazor/models/algorithms/nas/spos.py, class SPOS inherits from class BaseAlgorithm

from mmrazor.registry import MODELS
from ..base import BaseAlgorithm

@MODELS.register_module()
class SPOS(BaseAlgorithm):

def __init__(self, **kwargs):
super(SPOS, self).__init__(**kwargs)
pass

def loss(self, batch_inputs, data_samples):
pass

2. Develop new algorithm components (optional)

SPOS can directly use class OneShotModuleMutator as core functions provider. If mutators provided in MMRazor
don’t meet your needs, you can develop new algorithm components for your algorithm like OneShotModuleMutator,
we will take OneShotModuleMutator as an example to introduce how to develop a new algorithm component:

a. Create a new file mmrazor/models/mutators/module_mutator/one_shot_module_mutator.py, class
OneShotModuleMutator inherits from class ModuleMutator

b. Finish the functions you need in OneShotModuleMutator, eg: sample_choices, set_choices and so on.

from mmrazor.registry import MODELS
from .module_mutator import ModuleMutator

@MODELS.register_module()
class OneShotModuleMutator(ModuleMutator):

def __init__(self, **kwargs):
super().__init__(**kwargs)

def sample_choices(self) -> Dict[int, Any]:
pass

def set_choices(self, choices: Dict[int, Any]) -> None:
pass

@property
def mutable_class_type(self):

return OneShotMutableModule

c. Import the new mutator

You can either add the following line to mmrazor/models/mutators/__init__.py

from .module_mutator import OneShotModuleMutator

64 Chapter 8. Development tutorials

mmrazor

or alternatively add

custom_imports = dict(
imports=['mmrazor.models.mutators.module_mutator.one_shot_module_mutator'],
allow_failed_imports=False)

to the config file to avoid modifying the original code.

d. Use the algorithm component in your config file

mutator=dict(type='mmrazor.OneShotModuleMutator')

For further information, please refer to Mutator for more details.

3. Rewrite its loss function.

Develop key logic of your algorithm in functionloss. When having special steps to optimize, you should rewrite the
function train_step.

@MODELS.register_module()
class SPOS(BaseAlgorithm):

def __init__(self, **kwargs):
super(SPOS, self).__init__(**kwargs)
pass

def sample_subnet(self):
pass

def set_subnet(self, subnet):
pass

def loss(self, batch_inputs, data_samples):
if self.is_supernet:

random_subnet = self.sample_subnet()
self.set_subnet(random_subnet)
return self.architecture(batch_inputs, data_samples, mode='loss')

else:
return self.architecture(batch_inputs, data_samples, mode='loss')

4. Add your custom functions (optional)

After finishing your key logic in function loss, if you also need other custom functions, you can add them in class
SPOS as follows.

5. Import the class

You can either add the following line to mmrazor/models/algorithms/nas/__init__.py

from .spos import SPOS

__all__ = ['SPOS']

or alternatively add

custom_imports = dict(
imports=['mmrazor.models.algorithms.nas.spos'],
allow_failed_imports=False)

8.2. Customize NAS algorithms 65

https://aicarrier.feishu.cn/docx/doxcnmcie75HcbqkfBGaEoemBKg

mmrazor

to the config file to avoid modifying the original code.

6. Use the algorithm in your config file

model = dict(
type='mmrazor.SPOS',
architecture=supernet,
mutator=dict(type='mmrazor.OneShotModuleMutator'))

8.3 Customize pruning algorithms

Here we show how to develop new Pruning algorithms with an example of AutoSlim.

1. Register a new algorithm

Create a new file mmrazor/models/algorithms/prunning/autoslim.py, class AutoSlim inherits from class
BaseAlgorithm.

from mmrazor.registry import MODELS
from .base import BaseAlgorithm

@MODELS.register_module()
class AutoSlim(BaseAlgorithm):

def __init__(self,
mutator,
distiller,
architecture,
data_preprocessor,
num_random_samples = 2,
init_cfg = None) -> None:

super().__init__(**kwargs)
pass

def train_step(self, data, optimizer):
pass

2. Develop new algorithm components (optional)

AutoSlim can directly use class OneShotChannelMutator as core functions provider. If it can not meet your
needs, you can develop new algorithm components for your algorithm like OneShotChannalMutator. We will take
OneShotChannelMutator as an example to introduce how to develop a new algorithm component:

a. Create a new file mmrazor/models/mutators/channel_mutator/one_shot_channel_mutator.py, class
OneShotChannelMutator can inherits from ChannelMutator.

b. Finish the functions you need, eg: build_search_groups, set_choices , sample_choices and so on

from mmrazor.registry import MODELS
from .channel_mutator import ChannelMutator

@MODELS.register_module()
class OneShotChannelMutator(ChannelMutator):

def __init__(self, **kwargs):
super().__init__(**kwargs)

(continues on next page)

66 Chapter 8. Development tutorials

mmrazor

(continued from previous page)

def sample_choices(self):
pass

def set_choices(self, choice_dict):
pass

supernet is a kind of architecture in `mmrazor/models/architectures/`
def build_search_groups(self, supernet):

pass

c. Import the module in mmrazor/models/mutators/channel_mutator/__init__.py

from .one_shot_channel_mutator import OneShotChannelMutator

__all__ = [..., 'OneShotChannelMutator']

3. Rewrite its train_step

Develop key logic of your algorithm in functiontrain_step

from mmrazor.registry import MODELS
from ..base import BaseAlgorithm

@ALGORITHMS.register_module()
class AutoSlim(BaseAlgorithm):

def __init__(self,
mutator,
distiller,
architecture,
data_preprocessor,
num_random_samples = 2,
init_cfg = None) -> None:

super(AutoSlim, self).__init__(**kwargs)
pass

def train_step(self, data: List[dict],
optim_wrapper: OptimWrapper) -> Dict[str, torch.Tensor]:

def distill_step(
batch_inputs: torch.Tensor, data_samples: List[BaseDataElement]

) -> Dict[str, torch.Tensor]:
...
return subnet_losses

batch_inputs, data_samples = self.data_preprocessor(data, True)

total_losses = dict()
for kind in self.sample_kinds:

update the max subnet loss.
if kind == 'max':

self.set_max_subnet()
with optim_wrapper.optim_context(

(continues on next page)

8.3. Customize pruning algorithms 67

mmrazor

(continued from previous page)

self), self.distiller.teacher_recorders: # type: ignore
max_subnet_losses = self(batch_inputs, data_samples, mode='loss')
parsed_max_subnet_losses, _ = self.parse_losses(max_subnet_losses)
optim_wrapper.update_params(parsed_max_subnet_losses)

total_losses.update(add_prefix(max_subnet_losses, 'max_subnet'))
update the min subnet loss.
elif kind == 'min':

self.set_min_subnet()
min_subnet_losses = distill_step(batch_inputs, data_samples)
total_losses.update(add_prefix(min_subnet_losses, 'min_subnet'))

update the random subnets loss.
elif 'random' in kind:

self.set_subnet(self.sample_subnet())
random_subnet_losses = distill_step(batch_inputs, data_samples)
total_losses.update(

add_prefix(random_subnet_losses, f'{kind}_subnet'))

return total_losses

4. Add your custom functions (optional)

After finishing your key logic in function train_step, if you also need other custom functions, you can add them in
class AutoSlim.

5. Import the class

You can either add the following line to mmrazor/models/algorithms/__init__.py

from .pruning import AutoSlim

__all__ = [..., 'AutoSlim']

Or alternatively add

custom_imports = dict(
imports=['mmrazor.models.algorithms.pruning.autoslim'],
allow_failed_imports=False)

to the config file to avoid modifying the original code.

6. Use the algorithm in your config file

model = dict(
type='AutoSlim',
architecture=...,
mutator=dict(type='OneShotChannelMutator', ...),
)

68 Chapter 8. Development tutorials

mmrazor

8.4 Customize KD algorithms

Here we show how to develop new KD algorithms with an example of SingleTeacherDistill.

1. Register a new algorithm

Create a new file mmrazor/models/algorithms/distill/configurable/single_teacher_distill.py, class
SingleTeacherDistill inherits from class BaseAlgorithm

from mmrazor.registry import MODELS
from ..base import BaseAlgorithm

@ALGORITHMS.register_module()
class SingleTeacherDistill(BaseAlgorithm):

def __init__(self, use_gt, **kwargs):
super(Distillation, self).__init__(**kwargs)
pass

def train_step(self, data, optimizer):
pass

2. Develop connectors (Optional) .

Take ConvModuleConnector as an example.

from mmrazor.registry import MODELS
from .base_connector import BaseConnector

@MODELS.register_module()
class ConvModuleConnector(BaseConnector):

def __init__(self, in_channel, out_channel, kernel_size = 1, stride = 1):
...

def forward_train(self, feature):
...

3. Develop distiller.

Take ConfigurableDistiller as an example.

from .base_distiller import BaseDistiller
from mmrazor.registry import MODELS

@MODELS.register_module()
class ConfigurableDistiller(BaseDistiller):

def __init__(self,
student_recorders = None,
teacher_recorders = None,
distill_deliveries = None,
connectors = None,
distill_losses = None,
loss_forward_mappings = None):

...

(continues on next page)

8.4. Customize KD algorithms 69

mmrazor

(continued from previous page)

def build_connectors(self, connectors):
...

def build_distill_losses(self, losses):
...

def compute_distill_losses(self):
...

4. Develop custom loss (Optional).

Here we take L1Loss as an example. Create a new file in mmrazor/models/losses/l1_loss.py.

from mmrazor.registry import MODELS

@MODELS.register_module()
class L1Loss(nn.Module):

def __init__(
self,
loss_weight: float = 1.0,
size_average: Optional[bool] = None,
reduce: Optional[bool] = None,
reduction: str = 'mean',

) -> None:
super().__init__()
...

def forward(self, s_feature, t_feature):
loss = F.l1_loss(s_feature, t_feature, self.size_average, self.reduce,

self.reduction)
return self.loss_weight * loss

5. Import the class

You can either add the following line to mmrazor/models/algorithms/__init__.py

from .single_teacher_distill import SingleTeacherDistill

__all__ = [..., 'SingleTeacherDistill']

or alternatively add

custom_imports = dict(
imports=['mmrazor.models.algorithms.distill.configurable.single_teacher_distill'],
allow_failed_imports=False)

to the config file to avoid modifying the original code.

6. Use the algorithm in your config file

algorithm = dict(
type='Distill',
distiller=dict(type='SingleTeacherDistill', ...),
you can also use your new algorithm components here

(continues on next page)

70 Chapter 8. Development tutorials

mmrazor

(continued from previous page)

...
)

8.5 Customize Quantization algorithms

Here we show how to develop new QAT algorithms with an example of LSQ on OpenVINO backend.

This document is mainly aimed at QAT because the ptq process is relatively fixed and the components we provide
can meet most of the needs. We will first give an overview of the overall required development components, and then
introduce the specific implementation step by step.

8.5.1 Overall

In the mmrazor quantization pipeline, in order to better support the openmmlab environment, we have configured most
of the code modules for users. You can configure all the components directly in the config file. How to configure them
can be found in our file.

global_qconfig = dict(
w_observer=dict(),
a_observer=dict(),
w_fake_quant=dict(),
a_fake_quant=dict(),
w_qscheme=dict(),
a_qscheme=dict(),

)
model = dict(

type='mmrazor.MMArchitectureQuant',
architecture=resnet,
quantizer=dict(

type='mmrazor.OpenvinoQuantizer',
global_qconfig=global_qconfig,
tracer=dict()))

train_cfg = dict(type='mmrazor.LSQEpochBasedLoop')

For algorithm and tracer, we recommend that you use the default configurations MMArchitectureQuant and
CustomTracer provided by us. These two module operators are specially built for the openmmlab environment, while
other modules can refer to the following steps and choose or develop new operators according to your needs.

To adapt to different backends, you need to select a different quantizer.

To develop new quantization algorithms, you need to define new observer and fakequant.

If the existing loop does not meet your needs, you may need to make some changes to the existing loop based on your
algorithm.

8.5. Customize Quantization algorithms 71

https://github.com/open-mmlab/mmrazor/blob/quantize/configs/quantization/qat/minmax_openvino_resnet18_8xb32_in1k.py

mmrazor

8.5.2 Detailed steps

1. Select a quantization algorithm

We recommend that you directly use theMMArchitectureQuant in mmrazor/models/algorithms/
quantization/mm_architecture.py.The class MMArchitectureQuant inherits from class BaseAlgorithm.

This structure is built for the model in openmmlab. If you have other requirements, you can also refer to this document
to design the overall framework.

2. Select quantizer

At present, the quantizers we support are NativeQuantizer, OpenVINOQuantizer, TensorRTQuantizer and
AcademicQuantizer in mmrazor/models/quantizers/. AcademicQuantizer and NativeQuantizer inherit
from class BaseQuantizer in mmrazor/models/quantizers/base.py:

class BaseQuantizer(BaseModule):
def __init__(self, tracer):

super().__init__()
self.tracer = TASK_UTILS.build(tracer)

@abstractmethod
def prepare(self, model, graph_module):

"""tmp."""
pass

def swap_ff_with_fxff(self, model):
pass

NativeQuantizer is the operator we developed to adapt to the environment of mmrazor according to pytorch’s official
quantization logic. AcademicQuantizer is an operator designed for academic research to give users more space to
operate.

The class OpenVINOQuantizer and TensorRTQuantizer inherits from class NativeQuantize. They adapted
OpenVINO and TensorRTbackend respectively. You can also try to develop a quantizer based on other backends ac-
cording to your own needs.

3. Select tracer

Tracer we use CustomTracer in mmrazor/models/task_modules/tracer/fx/custom_tracer.py. You can in-
herit this class and customize your own tracer.

4. Develop new fakequant method(optional)

You can use fakequants provided by pytorch in mmrazor/models/fake_quants/torch_fake_quants.py as core
functions provider. If you want to use the fakequant methods from other papers, you can also define them yourself.
Let’s take lsq as an example as follows:

a.Create a new file mmrazor/models/fake_quants/lsq.py, class LearnableFakeQuantize inherits from class
FakeQuantizeBase.

b. Finish the functions you need, eg: observe_quant_params, calculate_qparams and so on.

from mmrazor.registry import MODELS
from torch.ao.quantization import FakeQuantizeBase

@MODELS.register_module()
class LearnableFakeQuantize(FakeQuantizeBase):

def __init__(self,
observer,
quant_min=0,

(continues on next page)

72 Chapter 8. Development tutorials

https://mmrazor.readthedocs.io/en/main/advanced_guides/customize_architectures.html#develop-common-model-components

mmrazor

(continued from previous page)

quant_max=255,
scale=1.,
zero_point=0.,
use_grad_scaling=True,
zero_point_trainable=False,
**observer_kwargs):

super(LearnableFakeQuantize, self).__init__()
pass

def observe_quant_params(self):
pass

def calculate_qparams(self):
pass

def forward(self, X):
pass

c.Import the module in mmrazor/models/fake_quants/__init__.py.

from .lsq import LearnableFakeQuantize

__all__ = ['LearnableFakeQuantize']

5. Develop new observer(optional)

You can directly use observers provided by pytorch in mmrazor/models/observers/torch_observers.py or use
observers customized by yourself. Let’s take LSQObserver as follows:

a.Create a new observer file mmrazor/models/observers/lsq.py, class LSQObserver inherits from class
MinMaxObserver and LSQObserverMixIn. These two observers can calculate zero_point and scale, respectively.

b.Finish the functions you need, eg: calculate_qparams and so on.

from mmrazor.registry import MODELS
from torch.ao.quantization.observer import MinMaxObserver

class LSQObserverMixIn:
def __init__(self):

self.tensor_norm = None

@torch.jit.export
def _calculate_scale(self):

scale = 2 * self.tensor_norm / math.sqrt(self.quant_max)
sync_tensor(scale)
return scale

@MODELS.register_module()
class LSQObserver(MinMaxObserver, LSQObserverMixIn):

"""LSQ observer.
Paper: Learned Step Size Quantization. <https://arxiv.org/abs/1902.08153>
"""
def __init__(self, *args, **kwargs):

MinMaxObserver.__init__(self, *args, **kwargs)
(continues on next page)

8.5. Customize Quantization algorithms 73

mmrazor

(continued from previous page)

LSQObserverMixIn.__init__(self)

def forward(self, x_orig):
"""Records the running minimum, maximum and tensor_norm of ``x``."""
if x_orig.numel() == 0:

return x_orig
x = x_orig.detach() # avoid keeping autograd tape
x = x.to(self.min_val.dtype)
self.tensor_norm = x.abs().mean()
min_val_cur, max_val_cur = torch.aminmax(x)
min_val = torch.min(min_val_cur, self.min_val)
max_val = torch.max(max_val_cur, self.max_val)
self.min_val.copy_(min_val)
self.max_val.copy_(max_val)
return x_orig

@torch.jit.export
def calculate_qparams(self):

"""Calculates the quantization parameters."""
_, zero_point = MinMaxObserver.calculate_qparams(self)
scale = LSQObserverMixIn._calculate_scale(self)
return scale, zero_point

c.Import the module in mmrazor/models/observers/__init__.py

from .lsq import LSQObserver

__all__ = ['LSQObserver']

6. Select loop or develop new loop

At present, the QAT loops we support are PTQLoop and QATEpochBasedLoop, in mmrazor/engine/runner/
quantization_loops.py. We can develop a new LSQEpochBasedLoop inherits from class QATEpochBasedLoop
and finish the functions we need in LSQ method.

from mmengine.runner import EpochBasedTrainLoop

@LOOPS.register_module()
class LSQEpochBasedLoop(QATEpochBasedLoop):

def __init__(
self,
runner,
dataloader: Union[DataLoader, Dict],
max_epochs: int,
val_begin: int = 1,
val_interval: int = 1,
freeze_bn_begin: int = -1,
dynamic_intervals: Optional[List[Tuple[int, int]]] = None) -> None:

super().__init__(
runner,
dataloader,
max_epochs,
val_begin,

(continues on next page)

74 Chapter 8. Development tutorials

mmrazor

(continued from previous page)

val_interval,
freeze_bn_begin=freeze_bn_begin,
dynamic_intervals=dynamic_intervals)

self.is_first_batch = True

def prepare_for_run_epoch(self):
pass

def prepare_for_val(self):
pass

def run_epoch(self) -> None:
pass

And then Import the module in mmrazor/engine/runner/__init__.py

from .quantization_loops import LSQEpochBasedLoop

__all__ = ['LSQEpochBasedLoop']

7. Use the algorithm in your config file

After completing the above steps, we have all the components of the qat algorithm, and now we can combine them in
the config file.

a.First, _base_ stores the location of the model that needs to be quantized.

b.Second, configure observer,fakequant and qscheme in global_qconfig in detail. You can configure the required
quantization bit width and quantization methods in qscheme, such as symmetric quantization or asymmetric quantiza-
tion.

c.Third, build the whole mmrazor model in model.

d.Finally, complete all the remaining required configuration files.

base = ['mmcls::resnet/resnet18_8xb16_cifar10.py']

global_qconfig = dict(
w_observer=dict(type='mmrazor.LSQPerChannelObserver'),
a_observer=dict(type='mmrazor.LSQObserver'),
w_fake_quant=dict(type='mmrazor.LearnableFakeQuantize'),
a_fake_quant=dict(type='mmrazor.LearnableFakeQuantize'),
w_qscheme=dict(

qdtype='qint8', bit=8, is_symmetry=True, is_symmetric_range=True),
a_qscheme=dict(qdtype='quint8', bit=8, is_symmetry=True),

)

model = dict(
delete=True,
scope='mmrazor',
type='MMArchitectureQuant',
data_preprocessor=dict(

type='mmcls.ClsDataPreprocessor',
num_classes=1000,

(continues on next page)

8.5. Customize Quantization algorithms 75

mmrazor

(continued from previous page)

RGB format normalization parameters
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
convert image from BGR to RGB
to_rgb=True),

architecture=resnet,
float_checkpoint=float_ckpt,
quantizer=dict(

type='mmrazor.OpenVINOQuantizer',
is_qat=True,
global_qconfig=global_qconfig,
tracer=dict(

type='mmrazor.CustomTracer',
skipped_methods=[

'mmcls.models.heads.ClsHead._get_loss',
'mmcls.models.heads.ClsHead._get_predictions'

])))

learning policy
optim_wrapper = dict()
param_scheduler = dict()
model_wrapper_cfg = dict()

train, val, test setting
train_cfg = dict(type='mmrazor.LSQEpochBasedLoop')
val_cfg = dict()
test_cfg = val_cfg

8.6 Customize mixed algorithms

Here we show how to customize mixed algorithms with our algorithm components. We take AutoSlim as an example.

Note: Why is AutoSlim a mixed algorithm?
In AutoSlim, the sandwich rule and the inplace distillation will be introduced to enhance the training process, which is
called as the slimmable training. The sandwich rule means that we train the model at smallest width, largest width and
(n 2) random widths, instead of n random widths. And the inplace distillation means that we use the predicted label
of the model at the largest width as the training label for other widths, while for the largest width we use ground truth.
So both the KD algorithm and the pruning algorithm are used in AutoSlim.

1. Register a new algorithm

Create a new file mmrazor/models/algorithms/nas/autoslim.py, class AutoSlim inherits from class
BaseAlgorithm. You need to build the KD algorithm component (distiller) and the pruning algorithm component
(mutator) because AutoSlim is a mixed algorithm.

Note: You can also inherit from the existing algorithm instead of BaseAlgorithm if your algorithm is similar to the
existing algorithm.

76 Chapter 8. Development tutorials

https://github.com/open-mmlab/mmrazor/tree/main/configs/pruning/mmcls/autoslim
https://github.com/open-mmlab/mmrazor/tree/main/configs/pruning/mmcls/autoslim
https://github.com/open-mmlab/mmrazor/tree/main/configs/pruning/mmcls/autoslim

mmrazor

Note: You can choose existing algorithm components in MMRazor, such as OneShotChannelMutator and
ConfigurableDistiller in AutoSlim.

If these in MMRazor don’t meet your needs, you can customize new algorithm components for your algorithm. Refer-
ence is as follows:

Customize NAS algorithms Customize Pruning algorithms Customize KD algorithms

Copyright (c) OpenMMLab. All rights reserved.
from typing import Dict, List, Optional, Union
import torch
from torch import nn

from mmrazor.models.distillers import ConfigurableDistiller
from mmrazor.models.mutators import OneShotChannelMutator
from mmrazor.registry import MODELS
from ..base import BaseAlgorithm

VALID_MUTATOR_TYPE = Union[OneShotChannelMutator, Dict]
VALID_DISTILLER_TYPE = Union[ConfigurableDistiller, Dict]

@MODELS.register_module()
class AutoSlim(BaseAlgorithm):

def __init__(self,
mutator: VALID_MUTATOR_TYPE,
distiller: VALID_DISTILLER_TYPE,
architecture: Union[BaseModel, Dict],
data_preprocessor: Optional[Union[Dict, nn.Module]] = None,
num_random_samples: int = 2,
init_cfg: Optional[Dict] = None) -> None:

super().__init__(architecture, data_preprocessor, init_cfg)
self.mutator = self._build_mutator(mutator)
`prepare_from_supernet` must be called before distiller initialized
self.mutator.prepare_from_supernet(self.architecture)

self.distiller = self._build_distiller(distiller)
self.distiller.prepare_from_teacher(self.architecture)
self.distiller.prepare_from_student(self.architecture)

......

def _build_mutator(self,
mutator: VALID_MUTATOR_TYPE) -> OneShotChannelMutator:

"""build mutator."""
if isinstance(mutator, dict):

mutator = MODELS.build(mutator)
if not isinstance(mutator, OneShotChannelMutator):

raise TypeError('mutator should be a `dict` or '
'`OneShotModuleMutator` instance, but got '
f'{type(mutator)}')

return mutator
(continues on next page)

8.6. Customize mixed algorithms 77

https://mmrazor.readthedocs.io/en/main/advanced_guides/customize_nas_algorithms.html
https://mmrazor.readthedocs.io/en/main/advanced_guides/customize_pruning_algorithms.html
https://mmrazor.readthedocs.io/en/main/advanced_guides/customize_kd_algorithms.html

mmrazor

(continued from previous page)

def _build_distiller(
self, distiller: VALID_DISTILLER_TYPE) -> ConfigurableDistiller:

if isinstance(distiller, dict):
distiller = MODELS.build(distiller)

if not isinstance(distiller, ConfigurableDistiller):
raise TypeError('distiller should be a `dict` or '

'`ConfigurableDistiller` instance, but got '
f'{type(distiller)}')

return distiller

2. Implement the core logic in train_step

In train_step, both the mutator and the distiller play an important role. For example, sample_subnet,
set_max_subnet and set_min_subnet are supported by the mutator, and the function ofdistill_step is mainly
implemented by the distiller.

@MODELS.register_module()
class AutoSlim(BaseAlgorithm):

......

def train_step(self, data: List[dict],
optim_wrapper: OptimWrapper) -> Dict[str, torch.Tensor]:

def distill_step(
batch_inputs: torch.Tensor, data_samples: List[BaseDataElement]

) -> Dict[str, torch.Tensor]:
......

......

batch_inputs, data_samples = self.data_preprocessor(data, True)

total_losses = dict()
for kind in self.sample_kinds:

update the max subnet loss.
if kind == 'max':

self.set_max_subnet()
......
total_losses.update(add_prefix(max_subnet_losses, 'max_subnet'))

update the min subnet loss.
elif kind == 'min':

self.set_min_subnet()
min_subnet_losses = distill_step(batch_inputs, data_samples)
total_losses.update(add_prefix(min_subnet_losses, 'min_subnet'))

update the random subnets loss.
elif 'random' in kind:

self.set_subnet(self.sample_subnet())
random_subnet_losses = distill_step(batch_inputs, data_samples)
total_losses.update(

add_prefix(random_subnet_losses, f'{kind}_subnet'))
(continues on next page)

78 Chapter 8. Development tutorials

mmrazor

(continued from previous page)

return total_losses

3. Import the class

You can either add the following line to mmrazor/models/algorithms/nas/__init__.py

from .autoslim import AutoSlim

__all__ = ['AutoSlim']

or alternatively add

custom_imports = dict(
imports=['mmrazor.models.algorithms.nas.autoslim'],
allow_failed_imports=False)

to the config file to avoid modifying the original code.

4. Use the algorithm in your config file

model= dict(
type='mmrazor.AutoSlim',
architecture=...,
mutator=dict(

type='OneShotChannelMutator',
...),

distiller=dict(
type='ConfigurableDistiller',
...),

...)

8.7 Apply existing algorithms to new tasks

Here we show how to apply existing algorithms to other tasks with an example of SPOS & DetNAS.

SPOS: Single Path One-Shot NAS for classification

DetNAS: Single Path One-Shot NAS for detection

You just need to configure the existing algorithms in your config only by replacing the architecture of mmcls
with mmdet ‘s
You can implement a new algorithm by inheriting from the existing algorithm quickly if the new task’s specificity leads
to the failure of applying directly.

SPOS config VS DetNAS config

• SPOS

base = [
'mmrazor::_base_/settings/imagenet_bs1024_spos.py',
'mmrazor::_base_/nas_backbones/spos_shufflenet_supernet.py',
'mmcls::_base_/default_runtime.py',

(continues on next page)

8.7. Apply existing algorithms to new tasks 79

https://github.com/open-mmlab/mmrazor/tree/main/configs/nas/mmcls/spos
https://github.com/open-mmlab/mmrazor/tree/main/configs/nas/mmdet/detnas

mmrazor

(continued from previous page)

]

model
supernet = dict(

type='ImageClassifier',
data_preprocessor=_base_.preprocess_cfg,
backbone=_base_.nas_backbone,
neck=dict(type='GlobalAveragePooling'),
head=dict(

type='LinearClsHead',
num_classes=1000,
in_channels=1024,
loss=dict(

type='LabelSmoothLoss',
num_classes=1000,
label_smooth_val=0.1,
mode='original',
loss_weight=1.0),

topk=(1, 5)))

model = dict(
type='mmrazor.SPOS',
architecture=supernet,
mutator=dict(type='mmrazor.OneShotModuleMutator'))

find_unused_parameters = True

• DetNAS

base = [
'mmdet::_base_/models/faster-rcnn_r50_fpn.py',
'mmdet::_base_/datasets/coco_detection.py',
'mmdet::_base_/schedules/schedule_1x.py',
'mmdet::_base_/default_runtime.py',
'mmrazor::_base_/nas_backbones/spos_shufflenet_supernet.py'

]

norm_cfg = dict(type='SyncBN', requires_grad=True)

supernet = _base_.model

supernet.backbone = _base_.nas_backbone
supernet.backbone.norm_cfg = norm_cfg
supernet.backbone.out_indices = (0, 1, 2, 3)
supernet.backbone.with_last_layer = False

supernet.neck.norm_cfg = norm_cfg
supernet.neck.in_channels = [64, 160, 320, 640]

supernet.roi_head.bbox_head.norm_cfg = norm_cfg
supernet.roi_head.bbox_head.type = 'Shared4Conv1FCBBoxHead'

(continues on next page)

80 Chapter 8. Development tutorials

mmrazor

(continued from previous page)

model = dict(
delete=True,
type='mmrazor.SPOS',
architecture=supernet,
mutator=dict(type='mmrazor.OneShotModuleMutator'))

find_unused_parameters = True

8.7. Apply existing algorithms to new tasks 81

mmrazor

82 Chapter 8. Development tutorials

CHAPTER

NINE

CHANGELOG OF V1.X

9.1 v1.0.0 (24/04/2023)

We are excited to announce the first official release of MMRazor 1.0.

9.1.1 Highlights

• MMRazor quantization is released, which has got through task models and model deployment. With its help, we
can quantize and deploy pre-trained models in OpenMMLab to specified backend quickly.

9.1.2 New Features & Improvements

NAS

• Update searchable model. (https://github.com/open-mmlab/mmrazor/pull/438)

• Update NasMutator to build search_space in NAS. (https://github.com/open-mmlab/mmrazor/pull/426)

Pruning

• Add a new pruning algorithm named GroupFisher. We support the full pipeline for GroupFisher, including
pruning, finetuning and deployment.(https://github.com/open-mmlab/mmrazor/pull/459)

KD

• Support stopping distillation after a certain epoch. (https://github.com/open-mmlab/mmrazor/pull/455)

• Support distilling rtmdet with mmrazor, refer to here. (https://github.com/open-mmlab/mmyolo/pull/544)

• Add mask channel in MGD Loss. (https://github.com/open-mmlab/mmrazor/pull/461)

83

mmrazor

Quantization

• Support two quantization types: QAT and PTQ (https://github.com/open-mmlab/mmrazor/pull/513)

• Support various quantization bits. (https://github.com/open-mmlab/mmrazor/pull/513)

• Support various quantization methods, such as per_tensor / per_channel, symmetry / asymmetry and so on.
(https://github.com/open-mmlab/mmrazor/pull/513)

• Support deploy quantized models to multiple backends, such as OpenVINO, TensorRT and so on.
(https://github.com/open-mmlab/mmrazor/pull/513)

• Support applying quantization algorithms to multiple task repos directly, such as mmcls, mmdet and so on.
(https://github.com/open-mmlab/mmrazor/pull/513)

9.1.3 Bug Fixes

• Fix split in Darts config. (https://github.com/open-mmlab/mmrazor/pull/451)

• Fix a bug in Recorders. (https://github.com/open-mmlab/mmrazor/pull/446)

• Fix a bug when using get_channel_unit.py. (https://github.com/open-mmlab/mmrazor/pull/432)

• Fix a bug when deploying a pruned model to cuda. (https://github.com/open-mmlab/mmrazor/pull/495)

9.1.4 Contributors

A total of 10 developers contributed to this release. Thanks @415905716 @gaoyang07 @humu789 @LKJacky @HIT-
cwh @aptsunny @cape-zck @vansin @twmht @wm901115nwpu

9.2 v1.0.0rc2 (06/01/2023)

We are excited to announce the release of MMRazor 1.0.0rc2.

9.2.1 New Features

NAS

• Add Performance Predictor: Support 4 performance predictors with 4 basic machine learning algo-
rithms, which can be used to directly predict model accuracy without evaluation.(https://github.com/open-
mmlab/mmrazor/pull/306)

• Support Autoformer, a one-shot architecture search algorithm dedicated to vision transformer
search.(https://github.com/open-mmlab/mmrazor/pull/315)

• Support BigNAS, a NAS algorithm which searches the following items in MobileNetV3 with the one-shot
paradigm: kernel_sizes, out_channels, expand_ratios, block_depth and input sizes. (https://github.com/open-
mmlab/mmrazor/pull/219)

84 Chapter 9. Changelog of v1.x

https://arxiv.org/pdf/2107.00651.pdf
https://arxiv.org/pdf/2003.11142

mmrazor

Pruning

• Support DCFF, a filter channel pruning algorithm dedicated to efficient image
classification.(https://github.com/open-mmlab/mmrazor/pull/295)

• We release a powerful tool to automatically analyze channel dependency, named ChannelAnalyzer. Here is an
example as shown below.(https://github.com/open-mmlab/mmrazor/pull/371)

Now, ChannelAnalyzer supports most of CNN models in torchvision, mmcls, mmseg and mmdet. We will continue to
support more models.

from mmrazor.models.task_modules import ChannelAnalyzer
from mmengine.hub import get_model
import json

model = get_model('mmdet::retinanet/retinanet_r18_fpn_1x_coco.py')
unit_configs: dict = ChannelAnalyzer().analyze(model)
unit_config0 = list(unit_configs.values())[0]
print(json.dumps(unit_config0, indent=4))
short version of the config
{
"channels": {
"input_related": [
{"name": "backbone.layer2.0.bn1"},
{“name": "backbone.layer2.0.conv2"}
],
"output_related": [
{"name": "backbone.layer2.0.conv1"},
{"name": "backbone.layer2.0.bn1"}
]
},
#}

KD

• Support MGD, a detection distillation algorithm.(https://github.com/open-mmlab/mmrazor/pull/381)

9.2.2 Bug Fixes

• Fix FpnTeacherDistll techer forward from backbone + neck + head to backbone + neck(#387)

• Fix some expire configs and checkpoints(#373 #372 #422)

9.2.3 Ongoing Changes

We will release Quantization in next version(1.0.0rc3)!

9.2. v1.0.0rc2 (06/01/2023) 85

https://arxiv.org/abs/2107.06916
https://arxiv.org/abs/2205.01529

mmrazor

9.2.4 Contributors

A total of 11 developers contributed to this release: @wutongshenqiu @sunnyxiaohu @aptsunny @humu789
@TinyTigerPan @FreakieHuang @LKJacky @wilxy @gaoyang07 @spynccat @yivona08.

9.3 v1.0.0rc1 (27/10/2022)

We are excited to announce the release of MMRazor 1.0.0rc1.

9.3.1 Highlights

• New Pruning FrameworkWe have systematically refactored the Pruning module. The new Pruning module can
more automatically resolve the dependencies between channels and cover more corner cases.

9.3.2 New Features

Pruning

• A new pruning framework is released in this release. (#311, #313) It consists of five core modules, including
Algorithm, ChannelMutator, MutableChannelUnit, MutableChannel and DynamicOp.

• MutableChannelUnit is introduced for the first time. Each MutableChannelUnit manages all channels with chan-
nel dependency.

from mmrazor.registry import MODELS

ARCHITECTURE_CFG = dict(
scope='mmcls',
type='ImageClassifier',
backbone=dict(type='MobileNetV2', widen_factor=1.5),
neck=dict(type='GlobalAveragePooling'),
head=dict(type='mmcls.LinearClsHead', num_classes=1000, in_channels=1920))

model = MODELS.build(ARCHITECTURE_CFG)
from mmrazor.models.mutators import ChannelMutator

channel_mutator = ChannelMutator()
channel_mutator.prepare_from_supernet(model)
units = channel_mutator.mutable_units
print(units[0])
SequentialMutableChannelUnit(
name=backbone.conv1.conv_(0, 48)_48
(output_related): ModuleList(
(0): Channel(backbone.conv1.conv, index=(0, 48), is_output_channel=true,␣
→˓expand_ratio=1)
(1): Channel(backbone.conv1.bn, index=(0, 48), is_output_channel=true, expand_
→˓ratio=1)
(2): Channel(backbone.layer1.0.conv.0.conv, index=(0, 48), is_output_
→˓channel=true, expand_ratio=1)
(3): Channel(backbone.layer1.0.conv.0.bn, index=(0, 48), is_output_
→˓channel=true, expand_ratio=1)

(continues on next page)

86 Chapter 9. Changelog of v1.x

mmrazor

(continued from previous page)

)
(input_related): ModuleList(
(0): Channel(backbone.conv1.bn, index=(0, 48), is_output_channel=false,␣
→˓expand_ratio=1)
(1): Channel(backbone.layer1.0.conv.0.conv, index=(0, 48), is_output_
→˓channel=false, expand_ratio=1)
(2): Channel(backbone.layer1.0.conv.0.bn, index=(0, 48), is_output_
→˓channel=false, expand_ratio=1)
(3): Channel(backbone.layer1.0.conv.1.conv, index=(0, 48), is_output_
→˓channel=false, expand_ratio=1)
)
(mutable_channel): SquentialMutableChannel(num_channels=48, activated_
→˓channels=48)
)

Our new pruning algorithm can help you develop pruning algorithm more fluently. Pelease refer to our documents
PruningUserGuide for model detail.

Distillation

• Support CRD, a distillation algorithm based on contrastive representation learning. (#281)

• Support PKD, a distillation algorithm that can be used in MMDetection and MMDetection3D. #304

• Support DEIT, a classic Transformer distillation algorithm.(#332)

• Add a more powerful baseline setting for KD. (#305)

• Add MethodInputsRecorder and FuncInputsRecorder to record the input of a class method or a func-
tion.(#320)

NAS

• Support DSNAS, a nas algorithm that does not require retraining. (#226)

Tools

• Support configurable immediate feature map visualization. (#293) A useful tool is supported in this release to
visualize the immediate features of a neural network. Please refer to our documents VisualizationUserGuide for
more details.

9.3.3 Bug Fixes

• Fix the bug that FunctionXXRecorder and FunctionXXDelivery can not be pickled. (#320)

9.3. v1.0.0rc1 (27/10/2022) 87

https://arxiv.org/abs/1910.10699
https://arxiv.org/abs/2207.02039
https://arxiv.org/abs/2012.12877
https://arxiv.org/abs/1503.02531
https://arxiv.org/pdf/2002.09128.pdf
http://./docs/zh_cn/user_guides/visualization.md

mmrazor

9.3.4 Ongoing changes

• Quantization: We are developing the basic interface of PTQ and QAT. RFC(Request for Comments) will be
released soon.

• AutoSlim: AutoSlim is not yet available and is being refactored.

• Fx Pruning Tracer: Currently, the model topology can only be resolved through the backward tracer. In the
future, both backward tracer and fx tracer will be supported.

• More Algorithms: BigNASAutoFormerGreedyNAS and Resrep will be released in the next few versions.

• Documentation: we will add more design docs, tutorials, and migration guidance so that the community can
deep dive into our new design, participate the future development, and smoothly migrate downstream libraries
to MMRazor 1.x.

9.3.5 Contributors

A total of 12 developers contributed to this release. Thanks @FreakieHuang @gaoyang07 @HIT-cwh @humu789
@LKJacky @pppppM @pprp @spynccat @sunnyxiaohu @wilxy @kitecats @SheffieldCao

9.4 v1.0.0rc0 (31/8/2022)

We are excited to announce the release of MMRazor 1.0.0rc0. MMRazor 1.0.0rc0 is the first version of MMRazor 1.x, a
part of the OpenMMLab 2.0 projects. Built upon the new training engine, MMRazor 1.x simplified the interaction with
other OpenMMLab repos, and upgraded the basic APIs of KD / Pruning / NAS. It also provides a series of knowledge
distillation algorithms.

9.4.1 Highlights

• New engines. MMRazor 1.x is based on MMEngine, which provides a general and powerful runner that allows
more flexible customizations and significantly simplifies the entrypoints of high-level interfaces.

• Unified interfaces. As a part of the OpenMMLab 2.0 projects, MMRazor 1.x unifies and refactors the inter-
faces and internal logic of train, testing, datasets, models, evaluation, and visualization. All the OpenMMLab
2.0 projects share the same design in those interfaces and logic to allow the emergence of multi-task/modality
algorithms.

• More configurable KD. MMRazor 1.x add Recorder to get the data needed for KD more automaticallyDelivery
to automatically pass the teacher’s intermediate results to the student and connector to handle feature dimension
mismatches between teacher and student.

• More kinds of KD algorithms. Benefitting from the powerful APIs of KD we have added several categories of
KD algorithms, data-free distillation, self-distillation, and zero-shot distillation.

• Unify the basic interface of NAS and Pruning. We refactored Mutable, adding mutable value and mutable
channel. Both NAS and Pruning can be developed based on mutables.

• More documentation and tutorials. We add a bunch of documentation and tutorials to help users get started
more smoothly. Read it here.

88 Chapter 9. Changelog of v1.x

https://github.com/open-mmlab/mmengine
https://github.com/open-mmlab/mmengine
https://mmrazor.readthedocs.io/en/1.0.0rc0/

mmrazor

9.4.2 Breaking Changes

Training and testing

• MMRazor 1.x runs on PyTorch>=1.6. We have deprecated the support of PyTorch 1.5 to embrace the mixed
precision training and other new features since PyTorch 1.6. Some models can still run on PyTorch 1.5, but the
full functionality of MMRazor 1.x is not guaranteed.

• MMRazor 1.x uses Runner in MMEngine rather than that in MMCV. The new Runner implements and unifies
the building logic of dataset, model, evaluation, and visualizer. Therefore, MMRazor 1.x no longer maintains the
building logics of those modules in mmdet.train.apis and tools/train.py. Those code have been migrated
into MMEngine.

• The Runner in MMEngine also supports testing and validation. The testing scripts are also simplified, which has
similar logic as that in training scripts to build the runner.

Configs

• The Runner in MMEngine uses a different config structures

• Config and model names

Components

• Algorithms

• Distillers

• Mutators

• Mutables

• Hooks

9.4.3 Improvements

• Support mixed precision training of all the models. However, some models may got Nan results due to some
numerical issues. We will update the documentation and list their results (accuracy of failure) of mixed precision
training.

9.4.4 Bug Fixes

• AutoSlim: Models of different sizes will no longer have the same size checkpoint

9.4. v1.0.0rc0 (31/8/2022) 89

https://github.com/open-mmlab/mmengine
https://github.com/open-mmlab/mmengine/blob/main/mmengine/runner/runner.py
https://github.com/open-mmlab/mmengine/blob/main/mmengine/runner/runner.py

mmrazor

9.4.5 New Features

• Support Activation Boundaries Loss

• Support Be Your Own Teacher

• Support Data-Free Learning of Student Networks

• Support Data-Free Adversarial Distillation

• Support Decoupled Knowledge Distillation

• Support Factor Transfer

• Support FitNets

• Support Distilling the Knowledge in a Neural Network

• Support Overhaul

• Support Zero-shot Knowledge Transfer via Adversarial Belief Matching

9.4.6 Ongoing changes

• Quantization: We are developing the basic interface of PTQ and QAT. RFC(Request for Comments) will be
released soon.

• AutoSlim: AutoSlim is not yet available and is being refactored.

• Fx Pruning Tracer: Currently, the model topology can only be resolved through the backward tracer. In the
future, both backward tracer and fx tracer will be supported.

• More Algorithms: BigNASAutoFormerGreedyNAS and Resrep will be released in the next few versions.

• Documentation: we will add more design docs, tutorials, and migration guidance so that the community can
deep dive into our new design, participate the future development, and smoothly migrate downstream libraries
to MMRazor 1.x.

9.4.7 Contributors

A total of 13 developers contributed to this release. Thanks @FreakieHuang @gaoyang07 @HIT-cwh @humu789
@LKJacky @pppppM @pprp @spynccat @sunnyxiaohu @wilxy @wutongshenqiu @NickYangMin @Hiwyl Special
thanks to @Davidgzx for his contribution to the data-free distillation algorithms

90 Chapter 9. Changelog of v1.x

https://arxiv.org/pdf/1811.03233.pdf
https://arxiv.org/abs/1905.08094
https://doi.org/10.1109/ICCV.2019.00361
https://arxiv.org/pdf/1912.11006.pdf
https://arxiv.org/pdf/2203.08679.pdf
https://arxiv.org/abs/1802.04977
https://arxiv.org/abs/1412.6550
https://arxiv.org/abs/1503.02531
https://arxiv.org/abs/1904.01866
https://arxiv.org/abs/1905.09768

CHAPTER

TEN

CONTRIBUTE GUIDE

All kinds of contributions are welcome, including but not limited to the following.

• Fix typo or bugs

• Add documentation or translate the documentation into other languages

• Add new features and components

10.1 Workflow

1. fork and pull the latest OpenMMLab repository

2. checkout a new branch (do not use master branch for PRs)

3. commit your changes

4. create a PR

Note: If you plan to add some new features that involve large changes, it is encouraged to open an issue for discussion
first.

10.2 Code style

10.2.1 Python

We adopt PEP8 as the preferred code style.

We use the following tools for linting and formatting:

• flake8: A wrapper around some linter tools.

• isort: A Python utility to sort imports.

• yapf: A formatter for Python files.

• codespell: A Python utility to fix common misspellings in text files.

• mdformat: Mdformat is an opinionated Markdown formatter that can be used to enforce a consistent style in
Markdown files.

• docformatter: A formatter to format docstring.

91

https://www.python.org/dev/peps/pep-0008/
https://github.com/PyCQA/flake8
https://github.com/timothycrosley/isort
https://github.com/google/yapf
https://github.com/codespell-project/codespell
https://github.com/executablebooks/mdformat
https://github.com/myint/docformatter

mmrazor

Style configurations of yapf and isort can be found in setup.cfg.

We use pre-commit hook that checks and formats for flake8, yapf, isort, trailing whitespaces, markdown
files, fixes end-of-files, double-quoted-strings, python-encoding-pragma, mixed-line-ending, sorts
requirments.txt automatically on every commit. The config for a pre-commit hook is stored in .pre-commit-config.

After you clone the repository, you will need to install initialize pre-commit hook.

pip install -U pre-commit

From the repository folder

pre-commit install

After this on every commit check code linters and formatter will be enforced.

Before you create a PR, make sure that your code lints and is formatted by yapf.

10.2.2 C++ and CUDA

We follow the Google C++ Style Guide.

92 Chapter 10. Contribute Guide

https://pre-commit.com/
https://google.github.io/styleguide/cppguide.html

CHAPTER

ELEVEN

FREQUENTLY ASKED QUESTIONS

93

mmrazor

94 Chapter 11. Frequently Asked Questions

CHAPTER

TWELVE

MMRAZOR.ENGINE

12.1 hooks

12.2 optimizers

12.3 runner

95

mmrazor

96 Chapter 12. mmrazor.engine

CHAPTER

THIRTEEN

MMRAZOR.MODELS

13.1 algorithms

13.2 architectures

13.3 distillers

13.4 losses

13.5 mutables

class mmrazor.models.mutables.BaseMutable(alias: Optional[str] = None, init_cfg: Optional[Dict] =
None)

Base Class for mutables. Mutable means a searchable module widely used in Neural Architecture Search(NAS).

It mainly consists of some optional operations, and achieving searchable function by handling choice with
MUTATOR.

All subclass should implement the following APIs:

• fix_chosen()

• dump_chosen()

• current_choice.setter()

• current_choice.getter()

Parameters
• alias (str, optional) – alias of the MUTABLE.

• init_cfg (dict, optional) – initialization configuration dict for BaseModule. Open-
MMLab has implement 5 initializer including Constant, Xavier, Normal, Uniform, Kaiming,
and Pretrained.

abstract property current_choice
Current choice will affect forward() and will be used in mmrazor.core.subnet.utils.
export_fix_subnet() or mutator.

97

mmrazor

abstract dump_chosen()→ mmrazor.utils.typing.DumpChosen
Save the current state of the mutable as a dictionary.

DumpChosen has chosen and meta fields. chosen is necessary, fix_chosen will use the chosen . meta
is used to store some non-essential information.

abstract fix_chosen(chosen)→ None
Fix mutable with chosen. This function would fix the chosen of mutable. The is_fixed will be set to
True and only the selected operations can be retained. All subclasses must implement this method.

Note: This operation is irreversible.

property is_fixed: bool
whether the mutable is fixed.

Note:
If a mutable is fixed, it is no longer a searchable module, just a normal fixed module.

If a mutable is not fixed, it still is a searchable module.

Type bool

class mmrazor.models.mutables.BaseMutableChannel(num_channels: int, **kwargs)
BaseMutableChannel works as a channel mask for DynamicOps to select channels.

|---------------------------------------| |mutable_in_channel(BaseMutableChannel) | |---------------------------------
------| | DynamicOp | |---------------------------------------| |mutable_out_channel(BaseMutableChannel)| |-------
--------------------------------|
All subclasses should implement the following APIs and the other abstract method in BaseMutable

• current_mask

Parameters num_channels (int) – number(dimension) of channels(mask).

property activated_channels: int
Number of activated channels.

abstract property current_mask: torch.Tensor
Return a mask indicating the channel selection.

dump_chosen()→ mmrazor.utils.typing.DumpChosen
Dump chosen.

fix_chosen(chosen=None)
Fix the mutable with chosen.

num_choices()→ int
Number of available choices.

class mmrazor.models.mutables.DCFFChannelUnit(num_channels: int, candidate_choices: List[Union[int,
float]] = [1.0], choice_mode: str = 'ratio', divisor: int =
1, min_value: int = 1, min_ratio: float = 0.9)

DCFFChannelUnit is for supernet DCFF and based on OneShotMutableChannelUnit. In DCFF supernet, each
module only has one choice. The channel choice is fixed before training.

Parameters

98 Chapter 13. mmrazor.models

mmrazor

• num_channels (int) – The raw number of channels.

• candidate_choices (List[Union[int, float]], optional) – A list of candidate
width numbers or ratios. Each candidate indicates how many channels to be reserved. De-
faults to [1.0](choice_mode=’number’).

• choice_mode (str, optional) – Mode of candidates. One of “ratio” or “number”. De-
faults to ‘ratio’.

• divisor (int) – Used to make choice divisible.

• min_value (int) – the minimal value used when make divisible.

• min_ratio (float) – the minimal ratio used when make divisible.

prepare_for_pruning(model: torch.nn.modules.module.Module)
In DCFFChannelGroup nn.Conv2d is replaced with FuseConv2d.

class mmrazor.models.mutables.DMCPChannelUnit(num_channels: int, choice_mode: str = 'number',
divisor: int = 1, min_value: int = 1, min_ratio: float =
0.5)

DMCPChannelUnit is for supernet DMCP and based on OneShotMutableChannelUnit. In DMCP supernet, each
module only has one choice. The channel choice is fixed before training.

Note: In dmcpunit, a new attribute activated_tensor_channels is defined

in self.mutable_channel, which is specifically used to store the number of channels in the form of tensor. Defaults
to None.

Parameters
• num_channels (int) – The raw number of channels.

• choice_mode (str, optional) – Mode of candidates. One of “ratio” or “number”. De-
faults to ‘ratio’.

• divisor (int) – Used to make choice divisible.

• min_value (int) – the minimal value used when make divisible.

• min_ratio (float) – the minimal ratio used when make divisible.

prepare_for_pruning(model: torch.nn.modules.module.Module)
In DMCPChannelGroup nn.BatchNorm2d is replaced with DMCPBatchNorm2d.

class mmrazor.models.mutables.DerivedMutable(choice_fn: Callable, mask_fn: Optional[Callable] =
None, source_mutables: Op-
tional[Iterable[mmrazor.models.mutables.base_mutable.BaseMutable]]
= None, alias: Optional[str] = None, init_cfg:
Optional[Dict] = None)

Class for derived mutable.

A derived mutable is a mutable derived from other mutables that has current_choice and current_mask attributes
(if any).

Note: A derived mutable does not have its own search space, so it is not legal to modify its current_choice or
current_mask directly. And the only way to modify them is by modifying current_choice or current_mask in
corresponding source mutables.

13.5. mutables 99

mmrazor

Parameters
• choice_fn (callable) – A closure that controls how to generate current_choice.

• mask_fn (callable, optional) – A closure that controls how to generate current_mask.
Defaults to None.

• source_mutables (iterable, optional) – Specify source mutables for this derived mu-
table. If the argument is None, source mutables will be traced automatically by parsing mu-
tables in closure variables. Defaults to None.

• alias (str, optional) – alias of the MUTABLE. Defaults to None.

• init_cfg (dict, optional) – initialization configuration dict for BaseModule. Open-
MMLab has implement 5 initializer including Constant, Xavier, Normal, Uniform, Kaiming,
and Pretrained. Defaults to None.

Examples

>>> from mmrazor.models.mutables import SquentialMutableChannel
>>> mutable_channel = SquentialMutableChannel(num_channels=3)
>>> # derive expand mutable
>>> derived_mutable_channel = mutable_channel * 2
>>> # source mutables will be traced automatically
>>> derived_mutable_channel.source_mutables
{SquentialMutableChannel(name=unbind, num_channels=3, current_choice=3)} # noqa:␣
→˓E501
>>> # modify `current_choice` of `mutable_channel`
>>> mutable_channel.current_choice = 2
>>> # `current_choice` and `current_mask` of derived mutable will be modified␣
→˓automatically # noqa: E501
>>> derived_mutable_channel
DerivedMutable(current_choice=4, activated_channels=4, source_mutables=
→˓{SquentialMutableChannel(name=unbind, num_channels=3, current_choice=2)}, is_
→˓fixed=False) # noqa: E501

property current_choice
Current choice of derived mutable.

property current_mask: torch.Tensor
Current mask of derived mutable.

dump_chosen()→ mmrazor.utils.typing.DumpChosen
Dump information of chosen.

Returns Dumped information.

Return type Dict

fix_chosen(chosen)→ None
Fix mutable with subnet config.

Warning: Fix derived mutable will have no actually effect.

property is_fixed: bool
Whether the derived mutable is fixed.

100 Chapter 13. mmrazor.models

mmrazor

Note: Depends on whether all source mutables are already fixed.

static is_source_mutable(mutable: object)→ bool
Judge whether an object is source mutable(not derived mutable).

Parameters mutable (object) – An object.

Returns Indicate whether the object is source mutable or not.

Return type bool

property num_choices: int
Number of all choices.

Note: Since derive mutable does not have its own search space, the number of choices will always be 1.

Returns Number of choices.

Return type int

class mmrazor.models.mutables.DiffChoiceRoute(edges: torch.nn.modules.container.ModuleDict,
num_chosen: int = 2, with_arch_param: bool = False,
alias: Optional[str] = None, init_cfg: Optional[Dict] =
None)

A type of MUTABLES for Neural Architecture Search, which can select inputs from different edges in a differen-
tiable or non-differentiable way. It is commonly used in DARTS.

Parameters
• edges (nn.ModuleDict) – the key of edges is the name of different edges. The value of

edges can be nn.Module or DiffMutableModule.

• with_arch_param (bool) – whether forward with arch_param. When set to True, a differ-
entiable way is adopted. When set to False, a non-differentiable way is adopted.

• alias (str, optional) – alias of the DiffChoiceRoute.

• init_cfg (dict, optional) – initialization configuration dict for BaseModule. Open-
MMLab has implement 6 initializers including Constant, Xavier, Normal, Uniform, Kaim-
ing, and Pretrained.

Examples

>>> import torch
>>> import torch.nn as nn
>>> edges_dict=nn.ModuleDict()
>>> edges_dict.add_module('first_edge', nn.Conv2d(32, 32, 3, 1, 1))
>>> edges_dict.add_module('second_edge', nn.Conv2d(32, 32, 5, 1, 2))
>>> edges_dict.add_module('third_edge', nn.MaxPool2d(3, 1, 1))
>>> edges_dict.add_module('fourth_edge', nn.MaxPool2d(5, 1, 2))
>>> edges_dict.add_module('fifth_edge', nn.MaxPool2d(7, 1, 3))
>>> diff_choice_route_cfg = dict(
... type="DiffChoiceRoute",
... edges=edges_dict,

(continues on next page)

13.5. mutables 101

mmrazor

(continued from previous page)

... with_arch_param=True,

...)
>>> arch_param
Parameter containing:
tensor([-6.1426e-04, 2.3596e-04, 1.4427e-03, 7.1668e-05,

-8.9739e-04], requires_grad=True)
>>> x = [torch.randn(4, 32, 64, 64) for _ in range(5)]
>>> output=diffchoiceroute.forward_arch_param(x, arch_param)
>>> output.shape
torch.Size([4, 32, 64, 64])

property choices: List[str]
all choices.

Type list

dump_chosen()→ mmrazor.utils.typing.DumpChosen
Save the current state of the mutable as a dictionary.

DumpChosen has chosen and meta fields. chosen is necessary, fix_chosen will use the chosen . meta
is used to store some non-essential information.

fix_chosen(chosen: List[str])→ None
Fix mutable with choice. This operation would convert to fixed mode. The is_fixed will be set to True
and only the selected operations can be retained.

Parameters chosen (list(str)) – the chosen key in MUTABLE.

forward(x: Any, arch_param: Optional[torch.nn.parameter.Parameter] = None)
Calls either forward_fixed() or forward_arch_param() depending on whether is_fixed() is True
and whether arch_param() is None.

To reduce the coupling between Mutable and Mutator, the arch_param is generated by the Mutator and is
passed to the forward function as an argument.

Note: forward_fixed() is called when in fixed mode. forward_arch_param() is called when in
unfixed mode.

Parameters
• x (Any) – input data for forward computation.

• arch_param (nn.Parameter, optional) – the architecture parameters for
DiffMutableModule.

Returns the result of forward

Return type Any

forward_all(x)
Forward all choices.

Parameters x (Any) – x could be a Torch.tensor or a tuple of Torch.tensor, containing input data
for forward computation.

Returns the result of forward all of the choice operation.

Return type Tensor

102 Chapter 13. mmrazor.models

mmrazor

forward_arch_param(x, arch_param: torch.nn.parameter.Parameter)→ torch.Tensor
Forward with architecture parameters.

Parameters
• x (list[Any] | tuple[Any]]) – x could be a list or a tuple of Torch.tensor, containing

input data for forward selection.

• arch_param (nn.Parameter) – architecture parameters for for DiffMutableModule.

Returns the result of forward with arch_param.

Return type Tensor

forward_fixed(inputs: Union[List, Tuple])→ torch.Tensor
Forward when the mutable is in fixed mode.

Parameters inputs (Union[List[Any], Tuple[Any]]) – inputs could be a list or a tuple of
Torch.tensor, containing input data for forward computation.

Returns the result of forward the fixed operation.

Return type Tensor

sample_choice(arch_param: torch.Tensor)→ List[str]
sample choice based on arch_param.

class mmrazor.models.mutables.DiffMutableModule(**kwargs)
Base class for differentiable mutables.

Parameters
• module_kwargs (dict[str, dict], optional) – Module initialization named argu-

ments. Defaults to None.

• alias (str, optional) – alias of the MUTABLE.

• init_cfg (dict, optional) – initialization configuration dict for BaseModule. Open-
MMLab has implement 5 initializer including Constant, Xavier, Normal, Uniform, Kaiming,
and Pretrained.

Note: forward_all() is called when calculating FLOPs.

compute_arch_probs(arch_param: torch.nn.parameter.Parameter)→ torch.Tensor
compute chosen probs according to architecture params.

forward(x: Any, arch_param: Optional[torch.nn.parameter.Parameter] = None)
Calls either forward_fixed() or forward_arch_param() depending on whether is_fixed() is True
and whether arch_param() is None.

To reduce the coupling between Mutable and Mutator, the arch_param is generated by the Mutator and is
passed to the forward function as an argument.

Note: forward_fixed() is called when in fixed mode. forward_arch_param() is called when in
unfixed mode.

Parameters
• x (Any) – input data for forward computation.

13.5. mutables 103

mmrazor

• arch_param (nn.Parameter, optional) – the architecture parameters for
DiffMutableModule.

Returns the result of forward

Return type Any

abstract forward_arch_param(x, arch_param: torch.nn.parameter.Parameter)
Forward when the mutable is not fixed.

All subclasses must implement this method.

abstract sample_choice(arch_param: torch.Tensor)
Sample choice according arch parameters.

set_forward_args(arch_param: torch.nn.parameter.Parameter)→ None
Interface for modifying the arch_param using partial.

class mmrazor.models.mutables.DiffMutableOP(candidates: Dict[str, Dict], fix_threshold: float = 1.0,
module_kwargs: Optional[Dict[str, Dict]] = None, alias:
Optional[str] = None, init_cfg: Optional[Dict] = None)

A type of MUTABLES for differentiable architecture search, such as DARTS. Search the best module by learnable
parameters arch_param.

Parameters
• candidates (dict[str, dict]) – the configs for the candidate operations.

• fix_threshold (float) – The threshold that determines whether to fix the choice of cur-
rent module as the op with the maximum probs. It happens when the maximum prob is
fix_threshold or more higher then all the other probs. Default to 1.0.

• module_kwargs (dict[str, dict], optional) – Module initialization named argu-
ments. Defaults to None.

• alias (str, optional) – alias of the MUTABLE.

• init_cfg (dict, optional) – initialization configuration dict for BaseModule. Open-
MMLab has implement 5 initializer including Constant, Xavier, Normal, Uniform, Kaiming,
and Pretrained.

property choices: List[str]
all choices.

Type list

dump_chosen()→ mmrazor.utils.typing.DumpChosen
Save the current state of the mutable as a dictionary.

DumpChosen has chosen and meta fields. chosen is necessary, fix_chosen will use the chosen . meta
is used to store some non-essential information.

fix_chosen(chosen: Union[str, List[str]])→ None
Fix mutable with choice. This operation would convert unfixed mode to fixed mode. The is_fixed will
be set to True and only the selected operations can be retained.

Parameters chosen (str) – the chosen key in MUTABLE. Defaults to None.

forward_all(x)→ torch.Tensor
Forward all choices. Used to calculate FLOPs.

Parameters x (Any) – x could be a Torch.tensor or a tuple of Torch.tensor, containing input data
for forward computation.

104 Chapter 13. mmrazor.models

mmrazor

Returns the result of forward all of the choice operation.

Return type Tensor

forward_arch_param(x, arch_param: torch.nn.parameter.Parameter)→ torch.Tensor
Forward with architecture parameters.

Parameters
• x (Any) – x could be a Torch.tensor or a tuple of Torch.tensor, containing input data for

forward computation.

• arch_param (str, optional) – architecture parameters for DiffMutableModule

Returns the result of forward with arch_param.

Return type Tensor

forward_fixed(x)→ torch.Tensor
Forward when the mutable is in fixed mode.

Parameters x (Any) – x could be a Torch.tensor or a tuple of Torch.tensor, containing input data
for forward computation.

Returns the result of forward the fixed operation.

Return type Tensor

sample_choice(arch_param: torch.Tensor)→ str
Sample choice based on arch_parameters.

class mmrazor.models.mutables.L1MutableChannelUnit(num_channels: int, choice_mode='number',
divisor=1, min_value=1, min_ratio=0.9)

Implementation of L1-norm pruning algorithm. It compute the l1-norm of modules and preferly prune the mod-
ules with less l1-norm.

Please refer to papre https://arxiv.org/pdf/1608.08710.pdf for more detail.

property current_choice: Union[int, float]
return current choice.

class mmrazor.models.mutables.MutableChannelContainer(num_channels: int, **kwargs)
MutableChannelContainer inherits from BaseMutableChannel. However, it’s not a single BaseMutableChannel,
but a container for BaseMutableChannel. The mask of MutableChannelContainer consists of all masks of stored
MutableChannels.

MutableChannelContainer |

Important interfaces:
register_mutable: register/store BaseMutableChannel in the MutableChannelContainer

property current_choice: torch.Tensor
Get current choices.

property current_mask: torch.Tensor
Return current mask.

register_mutable(mutable_channel: mmra-
zor.models.mutables.mutable_channel.base_mutable_channel.BaseMutableChannel,
start: int, end: int)

Register/Store BaseMutableChannel in the MutableChannelContainer in the range [start,end)

13.5. mutables 105

mmrazor

classmethod register_mutable_channel_to_module(module: mmra-
zor.models.architectures.dynamic_ops.mixins.dynamic_mixins.DynamicChannelMixin,
mutable: mmra-
zor.models.mutables.mutable_channel.base_mutable_channel.BaseMutableChannel,
is_to_output_channel=True, start=0, end=- 1)

Register a BaseMutableChannel to a module with MutableChannelContainers.

class mmrazor.models.mutables.MutableChannelUnit(num_channels: int, **kwargs)

config_template(with_init_args=False, with_channels=False)→ Dict
Return the config template of this unit. By default, the config template only includes a key ‘choice’.

Parameters
• with_init_args (bool) – if the config includes args for initialization.

• with_channels (bool) – if the config includes info about channels. the config with info
about channels can used to parse channel units without tracer.

property current_choice
Choice of this unit.

fix_chosen(choice=None)
Make the channels in this unit fixed.

classmethod init_from_cfg(model: torch.nn.modules.module.Module, config: Dict)
init a Channel using a config which can be generated by self.config_template(), include init choice.

classmethod init_from_predefined_model(model: torch.nn.modules.module.Module)
Initialize units using the model with pre-defined dynamicops and mutable-channels.

property is_mutable: bool
If the channel-unit is prunable.

property mutable_prefix: str
Mutable prefix.

abstract prepare_for_pruning(model)
Post process after parse units.

For example, we need to register mutables to dynamic-ops.

abstract sample_choice()
Randomly sample a valid choice and return.

class mmrazor.models.mutables.MutableValue(value_list: List[Union[int, float]], default_value:
Optional[Any] = None, alias: Optional[str] = None,
init_cfg: Optional[Dict] = None)

Base class for mutable value.

A mutable value is actually a mutable that adds some functionality to a list containing objects of the same type.

Parameters
• value_list (list) – List of value, each value must have the same type.

• default_value (any, optional) – Default value, must be one in value_list. Default to
None.

• alias (str, optional) – alias of the MUTABLE.

106 Chapter 13. mmrazor.models

mmrazor

• init_cfg (dict, optional) – initialization configuration dict for BaseModule. Open-
MMLab has implement 5 initializer including Constant, Xavier, Normal, Uniform, Kaiming,
and Pretrained.

property choices: List[Any]
List of choices.

property current_choice: Union[int, float]
Current choice of mutable value.

dump_chosen()→ mmrazor.utils.typing.DumpChosen
Dump information of chosen.

Returns Dumped information.

Return type Dict[str, Any]

fix_chosen(chosen: Union[int, float])→ None
Fix mutable value with subnet config.

Parameters chosen (dict) – the information of chosen.

property mutable_prefix: str
Mutable prefix.

property num_choices: int
Number of all choices.

Returns Number of choices.

Return type int

class mmrazor.models.mutables.OneHotMutableOP(candidates: Dict[str, Dict], fix_threshold: float = 1.0,
module_kwargs: Optional[Dict[str, Dict]] = None,
alias: Optional[str] = None, init_cfg: Optional[Dict] =
None)

A type of MUTABLES for one-hot sample based architecture search, such as DSNAS. Search the best module by
learnable parameters arch_param.

Parameters
• candidates (dict[str, dict]) – the configs for the candidate operations.

• module_kwargs (dict[str, dict], optional) – Module initialization named argu-
ments. Defaults to None.

• alias (str, optional) – alias of the MUTABLE.

• init_cfg (dict, optional) – initialization configuration dict for BaseModule. Open-
MMLab has implement 5 initializer including Constant, Xavier, Normal, Uniform, Kaiming,
and Pretrained.

forward_arch_param(x: Any, arch_param: torch.nn.parameter.Parameter)→ torch.Tensor
Forward with architecture parameters.

Parameters
• x (Any) – x could be a Torch.tensor or a tuple of Torch.tensor, containing input data for

forward computation.

• arch_param (str, optional) – architecture parameters for DiffMutableModule.

Returns the result of forward with arch_param.

Return type Tensor

13.5. mutables 107

mmrazor

sample_weights(arch_param: torch.nn.parameter.Parameter, probs: torch.Tensor, random_sample: bool =
False)→ torch.Tensor

Use one-hot distributions to sample the arch weights based on the arch params.

Parameters
• arch_param (nn.Parameter) – architecture parameters for DiffMutableModule.

• probs (Tensor) – the probs of choice.

• random_sample (bool) – Whether to random sample arch weights or not Defaults to False.

Returns Sampled one-hot arch weights.

Return type Tensor

class mmrazor.models.mutables.OneShotMutableChannel(num_channels: int, candidate_choices:
List[Union[int, float]] = [],
choice_mode='number', **kwargs)

OneShotMutableChannel is a subclass of SquentialMutableChannel. The difference is that a OneShot-
MutableChannel limits the candidates of the choice.

Parameters
• num_channels (int) – number of channels.

• candidate_choices (List[Union[float, int]], optional) – A list of candidate
width ratios. Each candidate indicates how many channels to be reserved. Defaults to [].

• choice_mode (str, optional) – Mode of choices. Defaults to ‘number’.

property current_choice: Union[int, float]
Get current choice.

class mmrazor.models.mutables.OneShotMutableChannelUnit(num_channels: int, candidate_choices:
List[Union[int, float]] = [0.5, 1.0],
choice_mode='ratio', divisor=1,
min_value=1, min_ratio=0.9)

OneShotMutableChannelUnit is for single path supernet such as AutoSlim. In single path supernet, each module
only has one choice invoked at the same time. A path is obtained by sampling all the available choices. It is the
base class for one shot mutable channel.

Parameters
• num_channels (_type_) – The raw number of channels.

• candidate_choices (List[Union[int, float]], optional) – A list of candidate
width ratios. Each candidate indicates how many channels to be reserved. Defaults to [0.5,
1.0](choice_mode=’ratio’).

• choice_mode (str, optional) – Mode of candidates. One of “ratio” or “number”. De-
faults to ‘ratio’.

• divisor (int) – Used to make choice divisible.

• min_value (int) – the minimal value used when make divisible.

• min_ratio (float) – the minimal ratio used when make divisible.

config_template(with_init_args=False, with_channels=False)→ Dict
Config template of the OneShotMutableChannelUnit.

property current_choice: Union[int, float]
Get current choice.

108 Chapter 13. mmrazor.models

mmrazor

property max_choice: Union[int, float]
Get Maximal choice.

property min_choice: Union[int, float]
Get Minimal choice.

prepare_for_pruning(model: torch.nn.modules.module.Module)
Prepare for pruning.

sample_choice()→ Union[int, float]
Sample a valid choice.

class mmrazor.models.mutables.OneShotMutableModule(module_kwargs: Optional[Dict[str, Dict]] =
None, alias: Optional[str] = None, init_cfg:
Optional[Dict] = None)

Base class for one shot mutable module. A base type of MUTABLES for single path supernet such as Single Path
One Shot.

All subclass should implement the following APIs and the other abstract method in MutableModule:

• sample_choice()

• forward_choice()

Note: forward_all() is called when calculating FLOPs.

forward(x: Any)→ Any
Calls either forward_fixed() or forward_choice() depending on whether is_fixed() is True and
whether current_choice() is None.

Note: forward_fixed() is called in fixed mode. forward_all() is called in unfixed mode with

current_choice() is None.

forward_choice() is called in unfixed mode with current_choice() is not None.

Parameters
• x (Any) – input data for forward computation.

• choice (CHOICE_TYPE, optional) – the chosen key in MUTABLE.

Returns the result of forward

Return type Any

abstract forward_choice(x, choice: str)
Forward with the unfixed mutable and current_choice is not None.

All subclasses must implement this method.

abstract sample_choice()→ str
Sample random choice.

Returns the chosen key in MUTABLE.

Return type str

13.5. mutables 109

mmrazor

class mmrazor.models.mutables.OneShotMutableOP(candidates: Union[Dict[str, Dict],
torch.nn.modules.container.ModuleDict],
module_kwargs: Optional[Dict[str, Dict]] = None,
alias: Optional[str] = None, init_cfg: Optional[Dict]
= None)

A type of MUTABLES for single path supernet, such as Single Path One Shot. In single path supernet, each choice
block only has one choice invoked at the same time. A path is obtained by sampling all the choice blocks.

Parameters
• candidates (dict[str, dict]) – the configs for the candidate operations.

• module_kwargs (dict[str, dict], optional) – Module initialization named argu-
ments. Defaults to None.

• alias (str, optional) – alias of the MUTABLE.

• init_cfg (dict, optional) – initialization configuration dict for BaseModule. Open-
MMLab has implement 5 initializer including Constant, Xavier, Normal, Uniform, Kaiming,
and Pretrained.

Examples

>>> import torch
>>> from mmrazor.models.mutables import OneShotMutableOP

>>> candidates = nn.ModuleDict({
... 'conv3x3': nn.Conv2d(32, 32, 3, 1, 1),
... 'conv5x5': nn.Conv2d(32, 32, 5, 1, 2),

>>> input = torch.randn(1, 32, 64, 64)
>>> op = OneShotMutableOP(candidates)

>>> op.choices
['conv3x3', 'conv5x5', 'conv7x7']
>>> op.num_choices
3
>>> op.is_fixed
False

>>> op.current_choice = 'conv3x3'
>>> unfix_output = op.forward(input)
>>> torch.all(unfixed_output == candidates['conv3x3'](input))
True

>>> op.fix_chosen('conv3x3')
>>> fix_output = op.forward(input)
>>> torch.all(fix_output == unfix_output)
True

>>> op.choices
['conv3x3']
>>> op.num_choices

(continues on next page)

110 Chapter 13. mmrazor.models

mmrazor

(continued from previous page)

1
>>> op.is_fixed
True

property choices: List[str]
all choices.

Type list

dump_chosen()→ mmrazor.utils.typing.DumpChosen
Save the current state of the mutable as a dictionary.

DumpChosen has chosen and meta fields. chosen is necessary, fix_chosen will use the chosen . meta
is used to store some non-essential information.

fix_chosen(chosen: str)→ None
Fix mutable with subnet config. This operation would convert unfixed mode to fixed mode. The is_fixed
will be set to True and only the selected operations can be retained.

Parameters chosen (str) – the chosen key in MUTABLE. Defaults to None.

forward_all(x)→ torch.Tensor
Forward all choices. Used to calculate FLOPs.

Parameters x (Any) – x could be a Torch.tensor or a tuple of Torch.tensor, containing input data
for forward computation.

Returns the result of forward all of the choice operation.

Return type Tensor

forward_choice(x, choice: str)→ torch.Tensor
Forward with the unfixed mutable and current choice is not None.

Parameters
• x (Any) – x could be a Torch.tensor or a tuple of Torch.tensor, containing input data for

forward computation.

• choice (str) – the chosen key in OneShotMutableOP.

Returns the result of forward the choice operation.

Return type Tensor

forward_fixed(x: Any)→ torch.Tensor
Forward with the fixed mutable.

Parameters x (Any) – x could be a Torch.tensor or a tuple of Torch.tensor, containing input data
for forward computation.

Returns the result of forward the fixed operation.

Return type Tensor

sample_choice()→ str
uniform sampling.

class mmrazor.models.mutables.OneShotMutableValue(value_list: List[Any], default_value: Optional[Any]
= None, alias: Optional[str] = None, init_cfg:
Optional[Dict] = None)

Class for one-shot mutable value.

13.5. mutables 111

mmrazor

one-shot mutable value provides sample_choice method and min_choice, max_choice properties on the top of
mutable value.

Parameters
• value_list (list) – List of value, each value must have the same type.

• default_value (any, optional) – Default value, must be one in value_list. Default to
None.

• alias (str, optional) – alias of the MUTABLE.

• init_cfg (dict, optional) – initialization configuration dict for BaseModule. Open-
MMLab has implement 5 initializer including Constant, Xavier, Normal, Uniform, Kaiming,
and Pretrained.

property max_choice: Any
Max choice of all choices.

Returns Max choice.

Return type Any

property min_choice: Any
Min choice of all choices.

Returns Min choice.

Return type Any

sample_choice()→ Any
Random sampling from choices.

Returns Selected choice.

Return type Any

class mmrazor.models.mutables.SequentialMutableChannelUnit(num_channels: int,
choice_mode='number', divisor=1,
min_value=1, min_ratio=0.9)

SequentialMutableChannelUnit accepts a intger(number) or float(ratio) as the choice, which indicates how many
of the channels are remained from left to right, like 11110000.

Parameters
• num_channels (int) – number of channels.

• choice_mode (str) – mode of choice, which is one of ‘number’ or ‘ratio’.

• divisor (int) – Used to make choice divisible.

• min_value (int) – the minimal value used when make divisible.

• min_ratio (float) – the minimal ratio used when make divisible.

config_template(with_init_args=False, with_channels=False)→ Dict
Template of config.

property current_choice: Union[int, float]
return current choice.

fix_chosen(choice=None)
fix chosen.

prepare_for_pruning(model: torch.nn.modules.module.Module)
Prepare for pruning, including register mutable channels.

112 Chapter 13. mmrazor.models

mmrazor

sample_choice()→ Union[int, float]
Sample a choice in (0,1]

class mmrazor.models.mutables.SimpleMutableChannel(num_channels: int, **kwargs)
SimpleMutableChannel is a simple BaseMutableChannel, it directly take a mask as a choice.

Parameters num_channels (int) – number of channels.

property current_choice: torch.Tensor
Get current choice.

property current_mask: torch.Tensor
Get current mask.

expand_mutable_channel(expand_ratio: Union[int, float])→
mmrazor.models.mutables.derived_mutable.DerivedMutable

Get a derived SimpleMutableChannel with expanded mask.

class mmrazor.models.mutables.SlimmableChannelUnit(num_channels: int, candidate_choices:
List[Union[int, float]] = [],
choice_mode='number', divisor=1, min_value=1,
min_ratio=0.9)

A type of MutableChannelUnit to train several subnets together.

Parameters
• num_channels (int) – The raw number of channels.

• candidate_choices (List[Union[int, float]], optional) – A list of candidate
width ratios. Each candidate indicates how many channels to be reserved. Defaults to [0.5,
1.0](choice_mode=’ratio’).

• choice_mode (str, optional) – Mode of candidates. One of ‘ratio’ or ‘number’. De-
faults to ‘number’.

• divisor (int, optional) – Used to make choice divisible.

• min_value (int, optional) – The minimal value used when make divisible.

• min_ratio (float, optional) – The minimal ratio used when make divisible.

alter_candidates_of_switchbn(candidates: List)
Change candidates of SwitchableBatchNorm2d.

prepare_for_pruning(model: torch.nn.modules.module.Module)
Prepare for pruning.

class mmrazor.models.mutables.SquentialMutableChannel(num_channels: int, choice_mode='number',
**kwargs)

SquentialMutableChannel defines a BaseMutableChannel which switch off channel mask from right to left se-
quentially, like ‘11111000’.

A choice of SquentialMutableChannel is an integer, which indicates how many channel are activated from left
to right.

Parameters num_channels (int) – number of channels.

property current_choice: Union[int, float]
Get current choice.

property current_mask: torch.Tensor
Return current mask.

13.5. mutables 113

mmrazor

fix_chosen(chosen=Ellipsis)
Fix chosen.

property is_num_mode
Get if the choice is number mode.

13.6 mutators

13.7 ops

13.8 task_modules

13.9 utils

mmrazor.models.utils.add_prefix(inputs: Dict, prefix: str)→ Dict
Add prefix for dict.

Parameters
• inputs (dict) – The input dict with str keys.

• prefix (str) – The prefix to add.

Returns The dict with keys updated with prefix.

Return type dict

mmrazor.models.utils.get_module_device(module: torch.nn.modules.module.Module)→ torch.device
Get the device of a module.

Parameters module (nn.Module) – A module contains the parameters.

mmrazor.models.utils.make_divisible(value: int, divisor: int, min_value: Optional[int] = None, min_ratio:
float = 0.9)→ int

Make divisible function.

This function rounds the channel number down to the nearest value that can be divisible by the divisor.

Parameters
• value (int) – The original channel number.

• divisor (int) – The divisor to fully divide the channel number.

• min_value (int, optional) – The minimum value of the output channel. Default: None,
means that the minimum value equal to the divisor.

• min_ratio (float) – The minimum ratio of the rounded channel number to the original
channel number. Default: 0.9.

Returns The modified output channel number

Return type int

mmrazor.models.utils.parse_values(candidate_lists: List[list])
Parse a list with format (min_range, max_range, step).

NOTE: this method is required when customizing search space in configs.

114 Chapter 13. mmrazor.models

mmrazor

mmrazor.models.utils.pop_rewriter_function_record(rewriter_context, function_record_to_pop)
Delete user-specific rewriters from RewriterContext._rewriter_manager.

We use the model which is rewritten by mmdeploy to build quantized models. However not all the func-
tions rewritten by mmdeploy need to be rewritten in mmrazor. For example, mmdeploy rewrite mm-
cls.models.classifiers.ImageClassifier.forward and mmcls.models.classifiers.BaseClassifier.forward for deploy-
ment. But they can’t be rewritten by mmrazor as ptq and qat are done in mmrazor. So to ensure ptq and qat
proceed normally, we have to remove these record from RewriterContext._rewriter_manager.

mmrazor.models.utils.set_requires_grad(nets: Union[torch.nn.modules.module.Module,
List[torch.nn.modules.module.Module]], requires_grad: bool =
False)→ None

Set requires_grad for all the networks.

Parameters
• nets (nn.Module | list[nn.Module]) – A list of networks or a single network.

• requires_grad (bool) – Whether the networks require gradients or not

13.9. utils 115

mmrazor

116 Chapter 13. mmrazor.models

CHAPTER

FOURTEEN

MMRAZOR.REGISTRY

117

mmrazor

118 Chapter 14. mmrazor.registry

CHAPTER

FIFTEEN

MMRAZOR.STRUCTURES

15.1 delivery

15.2 graph

15.3 recorder

15.4 subnet

class mmrazor.structures.subnet.Candidates(initdata: Optional[Union[Dict, List[Dict], Dict[str, Dict],
List[Dict[str, Dict]]]] = None)

The data structure of sampled candidate. The format is Union[Dict[str, Dict], List[Dict[str, Dict]]]. .. rubric::
Examples

>>> candidates = Candidates()
>>> subnet_1 = {'1': 'choice1', '2': 'choice2'}
>>> candidates.append(subnet_1)
>>> candidates
[{"{'1': 'choice1', '2': 'choice2'}":
{'score': 0.0, 'flops': 0.0, 'params': 0.0, 'latency': 0.0}}]
>>> candidates.set_resources(0, 49.9, 'flops')
>>> candidates.set_score(0, 100.)
>>> candidates
[{"{'1': 'choice1', '2': 'choice2'}":
{'score': 100.0, 'flops': 49.9, 'params': 0.0, 'latency': 0.0}}]
>>> subnet_2 = {'choice_3': 'layer_3', 'choice_4': 'layer_4'}
>>> candidates.append(subnet_2)
>>> candidates
[{"{'1': 'choice1', '2': 'choice2'}":
{'score': 100.0, 'flops': 49.9, 'params': 0.0, 'latency': 0.0}},
{"{'choice_3': 'layer_3', 'choice_4':'layer_4'}":
{'score': 0.0, 'flops': 0.0, 'params': 0.0, 'latency': 0.0}}]
>>> candidates.subnets
[{'1': 'choice1', '2': 'choice2'},
{'choice_3': 'layer_3', 'choice_4': 'layer_4'}]
>>> candidates.resources('flops')
[49.9, 0.0]

(continues on next page)

119

mmrazor

(continued from previous page)

>>> candidates.scores
[100.0, 0.0]

append(item: Union[Dict, List[Dict], Dict[str, Dict], List[Dict[str, Dict]]])→ None
Append operation.

extend(other: Any)→ None
Extend operation.

insert(i: int, item: Union[Dict, List[Dict], Dict[str, Dict], List[Dict[str, Dict]]])→ None
Insert operation.

resources(key_indicator: str = 'flops')→ List[float]
The resources of candidates.

property scores: List[float]
The scores of candidates.

set_resource(i: int, resources: float, key_indicator: str = 'flops')→ None
Set resources to the specified subnet by index.

set_score(i: int, score: float)→ None
Set score to the specified subnet by index.

sort_by(key_indicator: str = 'score', reverse: bool = True)→ None
Sort by a specific indicator in descending order.

Parameters
• key_indicator (str) – sort all candidates by key_indicator. Defaults to ‘score’.

• reverse (bool) – sort all candidates in descending order.

property subnets: List[Dict]
The subnets of candidates.

update_resources(resources: list, start: int = 0)→ None
Update resources to the specified candidate.

mmrazor.structures.subnet.convert_fix_subnet(fix_subnet: Dict[str, mmrazor.utils.typing.DumpChosen])
Convert the fixed subnet to avoid python typing error.

mmrazor.structures.subnet.export_fix_subnet(model: torch.nn.modules.module.Module,
export_subnet_mode: str = 'mutable', slice_weight: bool =
False, export_channel: bool = False)→ Tuple[Dict[str,
Any], Optional[Dict]]

Export subnet that can be loaded by load_fix_subnet(). Include subnet structure and subnet weight.

Parameters
• model (nn.Module) – The target model to export.

• export_subnet_mode (bool) – Subnet export method choice. Export by muta-
ble.dump_chosen() when set to ‘mutable’ (NAS) Export by mutator.config_template() when
set to ‘mutator’ (Prune)

• slice_weight (bool) – Export subnet weight. Default to False.

• export_channel (bool) – Whether to export the mutator’s channel. Often required when
finetune is needed for the exported subnet. Default to False.

120 Chapter 15. mmrazor.structures

mmrazor

Returns
Exported subnet choice config. static_model (Optional[Dict]): Exported static model state_dict.

Valid when `slice_weight`=True.

Return type fix_subnet (ValidFixMutable)

mmrazor.structures.subnet.load_fix_subnet(model: torch.nn.modules.module.Module, subnet_dict:
Union[str, pathlib.Path, Dict[str, Any]], load_subnet_mode:
str = 'mutable', prefix: str = '', extra_prefix: str = '')→ None

Load fix subnet.

15.5 tracer

15.5. tracer 121

mmrazor

122 Chapter 15. mmrazor.structures

CHAPTER

SIXTEEN

MMRAZOR.UTILS

class mmrazor.utils.IndexDict
IndexDict inherits from OrderedDict[Tuple[int, int], VT]. Each IndexDict object is a OrderDict object which
using index(Tuple[int,int]) as key and Any as value.

The key type is Tuple[a: int,b: int]. It indicates a range in the [a,b).

IndexDict has three features: 1. ensure a key always is a index(Tuple[int,int]). 1. ensure the the indexes are
sorted by ascending order. 2. ensure there is no overlap among indexes.

class mmrazor.utils.RuntimeInfo
A tools to get runtime info in MessageHub.

mmrazor.utils.find_latest_checkpoint(path, suffix='pth')
Find the latest checkpoint from the working directory.

Parameters
• path (str) – The path to find checkpoints.

• suffix (str) – File extension. Defaults to pth.

Returns File path of the latest checkpoint.

Return type latest_path(str | None)

References

mmrazor.utils.get_package_placeholder(string: str)→ object
Get placeholder instance which can avoid raising errors when down-stream dependency is not installed properly.

Parameters string (str) – the dependency’s name, i.e. mmcls

Raises ImportError – raise it when the dependency is not installed properly.

Returns PlaceHolder instance.

Return type object

mmrazor.utils.get_placeholder(string: str)→ object
Get placeholder instance which can avoid raising errors when down-stream dependency is not installed properly.

Parameters string (str) – the dependency’s name, i.e. mmcls

Raises ImportError – raise it when the dependency is not installed properly.

Returns PlaceHolder instance.

Return type object

123

mmrazor

mmrazor.utils.register_all_modules(init_default_scope: bool = True)→ None
Register all modules in mmrazor into the registries.

Parameters init_default_scope (bool) – Whether initialize the mmrazor default scope. When
init_default_scope=True, the global default scope will be set to mmrazor, and all registries will
build modules from mmrazor’s registry node. To understand more about the registry, please refer
to https://github.com/open-mmlab/mmengine/blob/main/docs/en/tutorials/registry.md Defaults
to True.

mmrazor.utils.setup_multi_processes(cfg)
Setup multi-processing environment variables.

124 Chapter 16. mmrazor.utils

https://github.com/open-mmlab/mmengine/blob/main/docs/en/tutorials/registry.md

CHAPTER

SEVENTEEN

ENGLISH

125

mmrazor

126 Chapter 17. English

CHAPTER

EIGHTEEN

127

mmrazor

128 Chapter 18.

CHAPTER

NINETEEN

INDICES AND TABLES

• genindex

• modindex

• search

129

mmrazor

130 Chapter 19. Indices and tables

PYTHON MODULE INDEX

m
mmrazor.models.architectures, 97
mmrazor.models.mutables, 97
mmrazor.models.utils, 114
mmrazor.registry, 117
mmrazor.structures.subnet, 119
mmrazor.utils, 123

131

mmrazor

132 Python Module Index

INDEX

A
activated_channels (mmra-

zor.models.mutables.BaseMutableChannel
property), 98

add_prefix() (in module mmrazor.models.utils), 114
alter_candidates_of_switchbn() (mmra-

zor.models.mutables.SlimmableChannelUnit
method), 113

append() (mmrazor.structures.subnet.Candidates
method), 120

B
BaseMutable (class in mmrazor.models.mutables), 97
BaseMutableChannel (class in mmra-

zor.models.mutables), 98

C
Candidates (class in mmrazor.structures.subnet), 119
choices (mmrazor.models.mutables.DiffChoiceRoute

property), 102
choices (mmrazor.models.mutables.DiffMutableOP

property), 104
choices (mmrazor.models.mutables.MutableValue prop-

erty), 107
choices (mmrazor.models.mutables.OneShotMutableOP

property), 111
compute_arch_probs() (mmra-

zor.models.mutables.DiffMutableModule
method), 103

config_template() (mmra-
zor.models.mutables.MutableChannelUnit
method), 106

config_template() (mmra-
zor.models.mutables.OneShotMutableChannelUnit
method), 108

config_template() (mmra-
zor.models.mutables.SequentialMutableChannelUnit
method), 112

convert_fix_subnet() (in module mmra-
zor.structures.subnet), 120

current_choice (mmra-
zor.models.mutables.BaseMutable property),

97
current_choice (mmra-

zor.models.mutables.DerivedMutable prop-
erty), 100

current_choice (mmra-
zor.models.mutables.L1MutableChannelUnit
property), 105

current_choice (mmra-
zor.models.mutables.MutableChannelContainer
property), 105

current_choice (mmra-
zor.models.mutables.MutableChannelUnit
property), 106

current_choice (mmra-
zor.models.mutables.MutableValue property),
107

current_choice (mmra-
zor.models.mutables.OneShotMutableChannel
property), 108

current_choice (mmra-
zor.models.mutables.OneShotMutableChannelUnit
property), 108

current_choice (mmra-
zor.models.mutables.SequentialMutableChannelUnit
property), 112

current_choice (mmra-
zor.models.mutables.SimpleMutableChannel
property), 113

current_choice (mmra-
zor.models.mutables.SquentialMutableChannel
property), 113

current_mask (mmra-
zor.models.mutables.BaseMutableChannel
property), 98

current_mask (mmra-
zor.models.mutables.DerivedMutable prop-
erty), 100

current_mask (mmra-
zor.models.mutables.MutableChannelContainer
property), 105

current_mask (mmra-
zor.models.mutables.SimpleMutableChannel

133

mmrazor

property), 113
current_mask (mmra-

zor.models.mutables.SquentialMutableChannel
property), 113

D
DCFFChannelUnit (class in mmrazor.models.mutables),

98
DerivedMutable (class in mmrazor.models.mutables),

99
DiffChoiceRoute (class in mmrazor.models.mutables),

101
DiffMutableModule (class in mmra-

zor.models.mutables), 103
DiffMutableOP (class in mmrazor.models.mutables),

104
DMCPChannelUnit (class in mmrazor.models.mutables),

99
dump_chosen() (mmra-

zor.models.mutables.BaseMutable method),
97

dump_chosen() (mmra-
zor.models.mutables.BaseMutableChannel
method), 98

dump_chosen() (mmra-
zor.models.mutables.DerivedMutable method),
100

dump_chosen() (mmra-
zor.models.mutables.DiffChoiceRoute method),
102

dump_chosen() (mmra-
zor.models.mutables.DiffMutableOP method),
104

dump_chosen() (mmra-
zor.models.mutables.MutableValue method),
107

dump_chosen() (mmra-
zor.models.mutables.OneShotMutableOP
method), 111

E
expand_mutable_channel() (mmra-

zor.models.mutables.SimpleMutableChannel
method), 113

export_fix_subnet() (in module mmra-
zor.structures.subnet), 120

extend() (mmrazor.structures.subnet.Candidates
method), 120

F
find_latest_checkpoint() (in module mmra-

zor.utils), 123
fix_chosen() (mmrazor.models.mutables.BaseMutable

method), 98

fix_chosen() (mmra-
zor.models.mutables.BaseMutableChannel
method), 98

fix_chosen() (mmra-
zor.models.mutables.DerivedMutable method),
100

fix_chosen() (mmra-
zor.models.mutables.DiffChoiceRoute method),
102

fix_chosen() (mmra-
zor.models.mutables.DiffMutableOP method),
104

fix_chosen() (mmra-
zor.models.mutables.MutableChannelUnit
method), 106

fix_chosen() (mmra-
zor.models.mutables.MutableValue method),
107

fix_chosen() (mmra-
zor.models.mutables.OneShotMutableOP
method), 111

fix_chosen() (mmra-
zor.models.mutables.SequentialMutableChannelUnit
method), 112

fix_chosen() (mmra-
zor.models.mutables.SquentialMutableChannel
method), 113

forward() (mmrazor.models.mutables.DiffChoiceRoute
method), 102

forward() (mmrazor.models.mutables.DiffMutableModule
method), 103

forward() (mmrazor.models.mutables.OneShotMutableModule
method), 109

forward_all() (mmra-
zor.models.mutables.DiffChoiceRoute method),
102

forward_all() (mmra-
zor.models.mutables.DiffMutableOP method),
104

forward_all() (mmra-
zor.models.mutables.OneShotMutableOP
method), 111

forward_arch_param() (mmra-
zor.models.mutables.DiffChoiceRoute method),
102

forward_arch_param() (mmra-
zor.models.mutables.DiffMutableModule
method), 104

forward_arch_param() (mmra-
zor.models.mutables.DiffMutableOP method),
105

forward_arch_param() (mmra-
zor.models.mutables.OneHotMutableOP
method), 107

134 Index

mmrazor

forward_choice() (mmra-
zor.models.mutables.OneShotMutableModule
method), 109

forward_choice() (mmra-
zor.models.mutables.OneShotMutableOP
method), 111

forward_fixed() (mmra-
zor.models.mutables.DiffChoiceRoute method),
103

forward_fixed() (mmra-
zor.models.mutables.DiffMutableOP method),
105

forward_fixed() (mmra-
zor.models.mutables.OneShotMutableOP
method), 111

G
get_module_device() (in module mmra-

zor.models.utils), 114
get_package_placeholder() (in module mmra-

zor.utils), 123
get_placeholder() (in module mmrazor.utils), 123

I
IndexDict (class in mmrazor.utils), 123
init_from_cfg() (mmra-

zor.models.mutables.MutableChannelUnit
class method), 106

init_from_predefined_model() (mmra-
zor.models.mutables.MutableChannelUnit
class method), 106

insert() (mmrazor.structures.subnet.Candidates
method), 120

is_fixed (mmrazor.models.mutables.BaseMutable
property), 98

is_fixed (mmrazor.models.mutables.DerivedMutable
property), 100

is_mutable (mmrazor.models.mutables.MutableChannelUnit
property), 106

is_num_mode (mmrazor.models.mutables.SquentialMutableChannel
property), 114

is_source_mutable() (mmra-
zor.models.mutables.DerivedMutable static
method), 101

L
L1MutableChannelUnit (class in mmra-

zor.models.mutables), 105
load_fix_subnet() (in module mmra-

zor.structures.subnet), 121

M
make_divisible() (in module mmrazor.models.utils),

114

max_choice (mmrazor.models.mutables.OneShotMutableChannelUnit
property), 108

max_choice (mmrazor.models.mutables.OneShotMutableValue
property), 112

min_choice (mmrazor.models.mutables.OneShotMutableChannelUnit
property), 109

min_choice (mmrazor.models.mutables.OneShotMutableValue
property), 112

mmrazor.models.architectures
module, 97

mmrazor.models.mutables
module, 97

mmrazor.models.utils
module, 114

mmrazor.registry
module, 117

mmrazor.structures.subnet
module, 119

mmrazor.utils
module, 123

module
mmrazor.models.architectures, 97
mmrazor.models.mutables, 97
mmrazor.models.utils, 114
mmrazor.registry, 117
mmrazor.structures.subnet, 119
mmrazor.utils, 123

mutable_prefix (mmra-
zor.models.mutables.MutableChannelUnit
property), 106

mutable_prefix (mmra-
zor.models.mutables.MutableValue property),
107

MutableChannelContainer (class in mmra-
zor.models.mutables), 105

MutableChannelUnit (class in mmra-
zor.models.mutables), 106

MutableValue (class in mmrazor.models.mutables), 106

N
num_choices (mmrazor.models.mutables.DerivedMutable

property), 101
num_choices (mmrazor.models.mutables.MutableValue

property), 107
num_choices() (mmra-

zor.models.mutables.BaseMutableChannel
method), 98

O
OneHotMutableOP (class in mmrazor.models.mutables),

107
OneShotMutableChannel (class in mmra-

zor.models.mutables), 108

Index 135

mmrazor

OneShotMutableChannelUnit (class in mmra-
zor.models.mutables), 108

OneShotMutableModule (class in mmra-
zor.models.mutables), 109

OneShotMutableOP (class in mmra-
zor.models.mutables), 109

OneShotMutableValue (class in mmra-
zor.models.mutables), 111

P
parse_values() (in module mmrazor.models.utils), 114
pop_rewriter_function_record() (in module mmra-

zor.models.utils), 114
prepare_for_pruning() (mmra-

zor.models.mutables.DCFFChannelUnit
method), 99

prepare_for_pruning() (mmra-
zor.models.mutables.DMCPChannelUnit
method), 99

prepare_for_pruning() (mmra-
zor.models.mutables.MutableChannelUnit
method), 106

prepare_for_pruning() (mmra-
zor.models.mutables.OneShotMutableChannelUnit
method), 109

prepare_for_pruning() (mmra-
zor.models.mutables.SequentialMutableChannelUnit
method), 112

prepare_for_pruning() (mmra-
zor.models.mutables.SlimmableChannelUnit
method), 113

R
register_all_modules() (in module mmrazor.utils),

123
register_mutable() (mmra-

zor.models.mutables.MutableChannelContainer
method), 105

register_mutable_channel_to_module() (mmra-
zor.models.mutables.MutableChannelContainer
class method), 105

resources() (mmrazor.structures.subnet.Candidates
method), 120

RuntimeInfo (class in mmrazor.utils), 123

S
sample_choice() (mmra-

zor.models.mutables.DiffChoiceRoute method),
103

sample_choice() (mmra-
zor.models.mutables.DiffMutableModule
method), 104

sample_choice() (mmra-
zor.models.mutables.DiffMutableOP method),
105

sample_choice() (mmra-
zor.models.mutables.MutableChannelUnit
method), 106

sample_choice() (mmra-
zor.models.mutables.OneShotMutableChannelUnit
method), 109

sample_choice() (mmra-
zor.models.mutables.OneShotMutableModule
method), 109

sample_choice() (mmra-
zor.models.mutables.OneShotMutableOP
method), 111

sample_choice() (mmra-
zor.models.mutables.OneShotMutableValue
method), 112

sample_choice() (mmra-
zor.models.mutables.SequentialMutableChannelUnit
method), 112

sample_weights() (mmra-
zor.models.mutables.OneHotMutableOP
method), 107

scores (mmrazor.structures.subnet.Candidates prop-
erty), 120

SequentialMutableChannelUnit (class in mmra-
zor.models.mutables), 112

set_forward_args() (mmra-
zor.models.mutables.DiffMutableModule
method), 104

set_requires_grad() (in module mmra-
zor.models.utils), 115

set_resource() (mmra-
zor.structures.subnet.Candidates method),
120

set_score() (mmrazor.structures.subnet.Candidates
method), 120

setup_multi_processes() (in module mmrazor.utils),
124

SimpleMutableChannel (class in mmra-
zor.models.mutables), 113

SlimmableChannelUnit (class in mmra-
zor.models.mutables), 113

sort_by() (mmrazor.structures.subnet.Candidates
method), 120

SquentialMutableChannel (class in mmra-
zor.models.mutables), 113

subnets (mmrazor.structures.subnet.Candidates prop-
erty), 120

U
update_resources() (mmra-

zor.structures.subnet.Candidates method),

136 Index

mmrazor

120

Index 137

	Overview
	Why MMRazor
	Major features:

	Design and Implement
	Design
	Implement

	Key concepts
	User guide
	Tutorials
	F&Q
	Get support and contribute back

	Installation
	Prerequisites
	Installation
	Best Practices

	Model Zoo
	Baselines

	Train & Test
	Learn about Configs
	Directory structure of configs in mmrazor
	More about config

	Train different types algorithms
	NAS
	Supernet Pre-training
	Search for Subnet on The Trained Supernet
	Subnet Retraining

	Pruning
	Subnet Retraining

	Distillation

	Train with different devices
	Training with CPU
	Train with single/multiple GPUs
	Train with multiple machines
	Launch multiple jobs on a single machine

	Test a model
	NAS
	Pruning
	Split Checkpoint(Optional)
	Test

	Distillation

	Quantization
	Quantization
	Introduction
	Major features

	Quick run
	How to quantize your own model quickly
	How to improve your quantization performance
	How to customize your quantization algorithm

	Useful Tools
	Key Concepts
	Algorithm
	Introduction
	What is algorithm in MMRazor
	About base algorithm

	How to use existing algorithms in MMRazor
	How to customize your algorithm
	Common pipeline
	Pipelines for different algorithms

	Mutator
	Introduction
	What is Mutator
	What is the relationship between Mutator and Mutable
	Supported mutators

	How to use existing mutators
	How to customize your mutator
	1.Registry a new mutator
	2. Implement abstract methods
	3. Implement other methods
	4. Import the class

	Mutable
	Introduction
	What is Mutable
	Features
	1. Support module mutable
	2. Support parameter mutable
	3. Support deriving from mutable parameter

	Supported mutables

	How to use existing mutables to configure searchable backbones
	How to customize your mutable
	About base mutable
	Steps of customizing mutables
	1. Registry a new mutable
	2. Implement abstract methods
	2.1 Basic abstract methods
	2.2 Specified abstract methods

	3. Implement other methods
	4. Import the class

	Recorder
	Introduction of Recorder
	Usage of Recorder
	FunctionOutputsRecorder
	Example

	MethodOutputsRecorder
	Example

	ModuleOutputsRecorder and ModuleInputsRecorder
	Example

	ParameterRecorder
	Example

	RecorderManager
	Example

	Delivery
	Introduction of Delivery
	Usage of Delivery
	FunctionOutputsDelivery
	Case 1: Delivery single function’s output from the teacher to the student.
	Case 2: Delivery multi function’s outputs from the teacher to the student.

	MethodOutputsDelivery
	Case: Align the inputs of the teacher model and the student model

	2.3 DistillDeliveryManager
	Case: Manager deliveries with DistillDeliveryManager

	Reference

	Development tutorials
	Customize Architectures
	Develop searchable model components
	Develop common model components

	Customize NAS algorithms
	Customize pruning algorithms
	Customize KD algorithms
	Customize Quantization algorithms
	Overall
	Detailed steps

	Customize mixed algorithms
	Apply existing algorithms to new tasks

	Changelog of v1.x
	v1.0.0 (24/04/2023)
	Highlights
	New Features & Improvements
	NAS
	Pruning
	KD
	Quantization

	Bug Fixes
	Contributors

	v1.0.0rc2 (06/01/2023)
	New Features
	NAS
	Pruning
	KD

	Bug Fixes
	Ongoing Changes
	Contributors

	v1.0.0rc1 (27/10/2022)
	Highlights
	New Features
	Pruning
	Distillation
	NAS
	Tools

	Bug Fixes
	Ongoing changes
	Contributors

	v1.0.0rc0 (31/8/2022)
	Highlights
	Breaking Changes
	Training and testing
	Configs
	Components

	Improvements
	Bug Fixes
	New Features
	Ongoing changes
	Contributors

	Contribute Guide
	Workflow
	Code style
	Python
	C++ and CUDA

	Frequently Asked Questions
	mmrazor.engine
	hooks
	optimizers
	runner

	mmrazor.models
	algorithms
	architectures
	distillers
	losses
	mutables
	mutators
	ops
	task_modules
	utils

	mmrazor.registry
	mmrazor.structures
	delivery
	graph
	recorder
	subnet
	tracer

	mmrazor.utils
	English
	简体中文
	Indices and tables
	Python Module Index
	Index

