mmrazor

MMRazor Author

Jun 25, 2023






10

11

12

13

14

15

16

17

18

19

Overview

Installation

Model Zoo

Train & Test
Quantization

Useful Tools

Key Concepts
Development tutorials
Changelog of v1.x
Contribute Guide
Frequently Asked Questions
mmrazor.engine
mmrazor.models
mmrazor.registry
mmrazor.structures
mmrazor.utils

English

Indices and tables

Python Module Index

Index

GET STARTED:

17
23
25
59
83
91
93
95
97
117
119
123
125
127
129
131

133







CHAPTER
ONE

OVERVIEW

1.1 Why MMRazor

MMRazor is a model compression toolkit for model slimming, which includes 4 mainstream technologies:
¢ Neural Architecture Search (NAS)
* Pruning
* Knowledge Distillation (KD)
¢ Quantization

It is a part of the OpenMMLab project. If you want to use it now, please refer to Installation.

1.1.1 Major features:

¢ Compatibility

MMRazor can be easily applied to various projects in OpenMMLab, due to the similar architecture design of Open-
MMLab as well as the decoupling of slimming algorithms and vision tasks.

* Flexibility

Different algorithms, e.g., NAS, pruning and KD, can be incorporated in a plug-n-play manner to build a more powerful
system.

¢ Convenience

With better modular design, developers can implement new model compression algorithms with only a few codes, or
even by simply modifying config files.



https://openmmlab.com/
https://mmrazor.readthedocs.io/en/main/get_started/installation.html
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1.2.1 Design

There are 3 layers (Application / Algorithm / Component) in overview design. MMRazor mainly includes both of
Component and Algorithm, while Application consist of some OpenMMLab upstream repos, such as MMClassifi-
cation, MMDetection, MM Segmentation and so on.

Component provides many useful functions for quickly implementing Algorithm. And thanks to OpenMMLab ‘s
powerful and highly flexible config mode and registry mechanism, Algorithm can be conveniently applied to Appli-
cation.

How to apply our lightweight algorithms to some upstream tasks? Please refer to the below.

1.2.2 Implement

In OpenMMLab, implementing vision tasks commonly includes 3 parts (model / dataset / schedule). And just like that,
implementing lightweight model also includes 3 parts (algorithm / dataset / schedule) in MMRazor.

Algorithm consist of architecture and components.

Architecture is similar to model of the upstream repos. You can chose to directly use the original model or cus-
tomize the new model as your architecture according to different tasks. For example, you can directly use ResNet-34
and ResNet-18 of MMClassification to implement some KD algorithms, but in NAS, you may need to customize a
searchable model.

Components consist of various special functions for supporting different lightweight algorithms. They can be directly
used in config because of registered into MMEngine. Thus, you can pick some components you need to quickly
implement your algorithm. For example, you may need mutator / mutable / searchle backbone if you want to
implement a NAS algorithm, and you can pick from distill loss/recorder/delivery/ connector if you need
a KD algorithm.

Please refer to the next section for more details about Implement.
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Note: The arg name of algorithmin config is model rather than algorithm in order to get better supports of MMCV
and MMEngine.

1.3 Key concepts

For better understanding and using MMRazor, it is highly recommended to read the following user documents according
to your own needs.

Global

e Algorithm
NAS & Pruning

* Mutator

e Mutable
KD

* Delivery

¢ Recorder

1.4 User guide

If you want to run mmrazor quickly, you can refer to as the follows.
e Learn about Configs
* Train different types algorithms
* Train with different devices

e Test a model

1.5 Tutorials

We provide the following general tutorials according to some typical requirements. If you want to further use MMRazor,
you can refer to our source code and API Reference.

Tutorial list
* Customize Architectures
* Customize NAS algorithms
e Customize Pruning algorithms
* Customize KD algorithms
* Customize mixed algorithms

* Apply existing algorithms to new tasks

1.3. Key concepts 3


https://mmrazor.readthedocs.io/en/main/advanced_guides/algorithm.html
https://mmrazor.readthedocs.io/en/main/advanced_guides/mutator.html
https://mmrazor.readthedocs.io/en/main/advanced_guides/mutable.html
https://mmrazor.readthedocs.io/en/main/advanced_guides/delivery.html
https://mmrazor.readthedocs.io/en/main/advanced_guides/recorder.html
https://mmrazor.readthedocs.io/en/main/user_guides/1_learn_about_config.html
https://mmrazor.readthedocs.io/en/main/user_guides/2_train_different_types_algorithms.html
https://mmrazor.readthedocs.io/en/main/user_guides/3_train_with_different_devices.html
https://mmrazor.readthedocs.io/en/main/user_guides/4_test_a_model.html
https://mmrazor.readthedocs.io/en/main/advanced_guides/customize_architectures.html
https://mmrazor.readthedocs.io/en/main/advanced_guides/customize_nas_algorithms.html
https://mmrazor.readthedocs.io/en/main/advanced_guides/customize_pruning_algorithms.html
https://mmrazor.readthedocs.io/en/main/advanced_guides/customize_kd_algorithms.html
https://mmrazor.readthedocs.io/en/main/advanced_guides/customize_mixed_algorithms.html
https://mmrazor.readthedocs.io/en/main/advanced_guides/apply_existing_algorithms_to_new_tasks.html
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1.6 F&Q

If you encounter some trouble using MMRazor, you can find whether your question has existed in F&Q. If not existed,
welcome to open a Github issue for getting support, we will reply it as soon.

1.7 Get support and contribute back

MMRazor is maintained on the MMRazor Github repository. We collect feedback and new proposals/ideas on Github.
You can:

* Open a GitHub issue for bugs and feature requests.

* Open a pull request to contribute code (make sure to read the contribution guide before doing this).

4 Chapter 1. Overview


https://mmrazor.readthedocs.io/en/main/notes/faq.html
https://github.com/open-mmlab/mmrazor/issues
https://github.com/open-mmlab/mmrazor
https://github.com/open-mmlab/mmrazor/issues
https://github.com/open-mmlab/mmrazor/pulls
https://mmrazor.readthedocs.io/en/main/notes/contribution_guide.html

CHAPTER
TWO

INSTALLATION

2.1 Prerequisites

In this section we demonstrate how to prepare an environment with PyTorch.
MMRazor works on Linux, Windows and macOS. It requires Python 3.6+, CUDA 9.2+ and PyTorch 1.8+.

Note: If you are experienced with PyTorch and have already installed it, just skip this part and jump to the next section.
Otherwise, you can follow these steps for the preparation.

Step 0. Download and install Miniconda from the official website.

Step 1. Create a conda environment and activate it.

conda create --name openmmlab python=3.8 -y
conda activate openmmlab

Step 2. Install PyTorch following official instructions, e.g.
On GPU platforms:

conda install pytorch torchvision -c pytorch

On CPU platforms:

conda install pytorch torchvision cpuonly -c pytorch

2.2 Installation

We recommend that users follow our best practices to install MMRazor.

2.2.1 Best Practices

Step 0. Install MMCYV using MIM.

pip install -U openmim
mim install mmengine
mim install "mmcv>=2.0.0"

Step 1. Install MMRazor.

Case a: If you develop and run mmrazor directly, install it from source:



https://docs.conda.io/en/latest/miniconda.html
https://pytorch.org/get-started/locally/
https://github.com/open-mmlab/mmcv
https://github.com/open-mmlab/mim
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git clone -b main https://github.com/open-mmlab/mmrazor.git

cd mmrazor

pip install -v -e .

# '-v' means verbose, or more output

# '-e' means installing a project in editable mode,

# thus any local modifications made to the code will take effect without reinstallation.

Case b: If you use mmrazor as a dependency or third-party package, install it with pip:

pip install "mmrazor>=1.0.0"

6 Chapter 2. Installation




CHAPTER
THREE

3.1 Baselines

Type Name Link

nas SPOS README.md
nas DARTS README.md
nas DetNAS README.md
pruning AutoSlim README.md
pruning L1-norm README.md
pruning Group Fisher README.md
pruning DMCP README.md
ditill ABLoss README.md
ditill BYOT README.md
ditill DAFL README.md
ditill DFAD README.md
ditill DKD README.md
ditill Factor Transfer | README.md
ditill FitNets README.md
ditill KD README.md
ditill OFD README.md
ditill RKD README.md
ditill WSLD README.md
ditill ZSKT README.md
ditill CWD README.md
ditill FBKD README.md
quantization | PTQ README.md
quantization | QAT README.md
quantization | LSQ README.md
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https://github.com/open-mmlab/mmrazor/tree/main/configs/nas/mmcls/spos
https://github.com/open-mmlab/mmrazor/tree/main/configs/nas/mmcls/darts
https://github.com/open-mmlab/mmrazor/tree/main/configs/nas/mmdet/detnas
https://github.com/open-mmlab/mmrazor/tree/main/configs/pruning/mmcls/autoslim
https://github.com/open-mmlab/mmrazor/tree/main//configs/pruning/mmcls/l1-norm
https://github.com/open-mmlab/mmrazor/tree/main/configs/pruning/base/group_fisher
https://github.com/open-mmlab/mmrazor/tree/main/configs/pruning/mmcls/dmcp
https://github.com/open-mmlab/mmrazor/tree/main/configs/distill/mmcls/abloss
https://github.com/open-mmlab/mmrazor/tree/main/configs/distill/mmcls/byot
https://github.com/open-mmlab/mmrazor/tree/main/configs/distill/mmcls/dafl
https://github.com/open-mmlab/mmrazor/tree/main/configs/distill/mmcls/dfad
https://github.com/open-mmlab/mmrazor/tree/main/configs/distill/mmcls/dkd
https://github.com/open-mmlab/mmrazor/tree/main/configs/distill/mmcls/factor_transfer
https://github.com/open-mmlab/mmrazor/tree/main/configs/distill/mmcls/fitnets
https://github.com/open-mmlab/mmrazor/tree/main/configs/distill/mmcls/kd
https://github.com/open-mmlab/mmrazor/tree/main/configs/distill/mmcls/ofd
https://github.com/open-mmlab/mmrazor/tree/main/configs/distill/mmcls/rkd
https://github.com/open-mmlab/mmrazor/tree/main/configs/distill/mmcls/wsld
https://github.com/open-mmlab/mmrazor/tree/main/configs/distill/mmcls/zskt
https://github.com/open-mmlab/mmrazor/tree/main/configs/distill/mmdet/cwd
https://github.com/open-mmlab/mmrazor/tree/main/configs/distill/mmdet/fbkd
https://github.com/open-mmlab/mmrazor/tree/main/configs/quantization/ptq/base
https://github.com/open-mmlab/mmrazor/tree/main/configs/quantization/qat/base
https://github.com/open-mmlab/mmrazor/tree/main/configs/quantization/qat/lsq
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CHAPTER
FOUR

TRAIN & TEST

4.1 Learn about Configs

4.1.1 Directory structure of configs in mmrazor

datasets ——— mmxxx

nas_backbones

—— _base_ _
settings
vanilla_models
distil ———— mmxxx ———— algorithms
nas ———— MmmxxX -———— algorithms
“—— pruning ———— mMmMxxx ——————— algorithms
“—— vanila ——— mmxxx ————— task models

mmxxx: means some task repositories of OpenMMLab, such mmcls, mmdet, mmseg and so on.
_base_: includes configures of datasets, experiment settings and model architectures.
distill/nas/pruning: model compression algorithms.

vanilla: task models owned by mmrazor.
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4.1.2 More about config

Please refer to config in mmengine.

4.2 Train different types algorithms

Before running our algorithms, you may need to prepare the datasets according to the instructions in the corre-
sponding document.

Note:

* With the help of mmengine, mmrazor unified entered interfaces for various tasks, thus our algorithms will adapt
all OpenMMLab upstream repos in theory.

* We dynamically pass arguments cfg-options (e.g.,mutable_cfgin nas algorithm or channel_c£g in pruning
algorithm) to avoid the need for a config for each subnet or checkpoint. If you want to specify different subnets
for retraining or testing, you just need to change this argument.

4.2.1 NAS

Here we take SPOS(Single Path One Shot) as an example. There are three steps to start neural network search(NAS),
including supernet pre-training, search for subnet on the trained supernet and subnet retraining.

Supernet Pre-training

python tools/train.py ${CONFIG_FILE} [optional arguments]

The usage of optional arguments are the same as corresponding tasks like mmclassification, mmdetection and mmseg-
mentation.

For example,

python ./tools/train.py \
configs/nas/mmcls/spos/spos_shufflenet_supernet_8xb128_inlk.py
--work-dir $WORK_DIR

Search for Subnet on The Trained Supernet

python tools/train.py ${CONFIG_FILE} --cfg-options load_from=${CHECKPOINT_PATH}.
—[optional arguments]

For example,

python ./tools/train.py \
configs/nas/mmcls/spos/spos_shufflenet_search_8xb128_inlk.py \
--cfg-options load_from=$STEP1_CKPT \
--work-dir $WORK_DIR

10 Chapter 4. Train & Test



https://github.com/open-mmlab/mmengine/blob/main/docs/zh_cn/tutorials/config.md
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Subnet Retraining

python tools/train.py ${CONFIG_FILE} \
--cfg-options algorithm.fix_subnet=${MUTABLE_CFG_PATH} [optional arguments]

e MUTABLE_CFG_PATH: Path of fix_subnet. £ix_subnet represents config for mutable of the subnet searched
out, used to specify different subnets for retraining. An example for fix_subnet can be found here, and the
usage can be found here.

For example,

python ./tools/train.py \
configs/nas/mmcls/spos/spos_shufflenet_subnet_8xb128_inlk.py \
--work-dir $WORK_DIR \
--cfg-options algorithm.fix_subnet=$YAML_FILE_BY_STEP2

We note that instead of using --cfg-options, you can also directly modify configs/nas/mmcls/spos/
" “spos_shufflenet_subnet_8xb128_inlk" " .py like this:

fix_subnet = 'configs/nas/mmcls/spos/SPOS_SHUFFLENETV2_330M_IN1k_PAPER.yaml'
model = dict(fix_subnet=fix_subnet)

4.2.2 Pruning

Pruning has three steps, including supernet pre-training, search for subnet on the trained supernet and subnet
retraining. The commands of the first two steps are similar to NAS, except that we need to use CONFIG_FILE of
Pruning here. The commands of the subnet retraining are as follows.

Subnet Retraining

python tools/train.py ${CONFIG_FILE} --cfg-options model._channel_cfg_paths=${CHANNEL_
—CFG_PATH} [optional arguments]

Different from NAS, the argument that needs to be specified here is channel_cfg_paths.

e CHANNEL_CFG_PATH: Path of _channel_cfg_path. channel_cfgrepresents config for channel of the subnet
searched out, used to specify different subnets for testing.

For example, the default _channel_cfg_paths is set in the config below.

python ./tools/train.py \
configs/pruning/mmcls/autoslim/autoslim_mbv2_1.5x_subnet_8xb256_inlk_flops-530M.py \
--work-dir your_work_dir

4.2. Train different types algorithms 11



https://github.com/open-mmlab/mmrazor/blob/master/configs/nas/spos/SPOS_SHUFFLENETV2_330M_IN1k_PAPER.yaml
https://github.com/open-mmlab/mmrazor/blob/master/configs/nas/spos/README.md#subnet-retraining-on-imagenet
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4.2.3 Distillation

There is only one step to start knowledge distillation.

python tools/train.py ${CONFIG_FILE} [optional arguments]

For example,

python ./tools/train.py \
configs/distill/mmcls/kd/kd_logits_r34_r18_8xb32_inlk.py \
--work-dir your_work_dir

4.3 Train with different devices

Note: The default learning rate in config files is for 8 GPUs. If using different number GPUs, the total batch size will
change in proportion, you have to scale the learning rate following new_lr = old_lr * new_ngpus / old_ngpus.
We recommend to use tools/dist_train.sh even with 1 gpu, since some methods do not support non-distributed
training.

4.3.1 Training with CPU

export CUDA_VISIBLE_DEVICES=-1
python tools/train.py ${CONFIG_FILE}

Note: We do not recommend users to use CPU for training because it is too slow and some algorithms are using SyncBN
which is based on distributed training. We support this feature to allow users to debug on machines without GPU for
convenience.

4.3.2 Train with single/multiple GPUs

sh tools/dist_train.sh ${CONFIG_FILE} ${GPUS} --work_dir ${YOUR_WORK_DIR} [optional.
—.arguments]

Note: During training, checkpoints and logs are saved in the same folder structure as the config file under work_dirs/.
Custom work directory is not recommended since evaluation scripts infer work directories from the config file name.
If you want to save your weights somewhere else, please use symlink, for example:

In -s ${YOUR_WORK_DIRS} ${MMRAZOR}/work_dirs

Alternatively, if you run MMRazor on a cluster managed with slurm:

GPUS_PER_NODE=${GPUS_PER_NODE} GPUS=${GPUS} SRUN_ARGS=${SRUN_ARGS} sh tools/xxx/slurm_
—train.sh ${PARTITION} ${JOB_NAME} ${CONFIG_FILE} ${YOUR_WORK_DIR} [optional arguments]

12 Chapter 4. Train & Test
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4.3.3 Train with multiple machines

If you launch with multiple machines simply connected with ethernet, you can simply run the following commands:

On the first machine:

NNODES=2 NODE_RANK=0 PORT=$MASTER_PORT MASTER_ADDR=$MASTER_ADDR sh tools/dist_train.sh
—$CONFIG $GPUS

On the second machine:

NNODES=2 NODE_RANK=1 PORT=$MASTER_PORT MASTER_ADDR=$MASTER_ADDR sh tools/dist_train.sh
—$CONFIG $GPUS

Usually it is slow if you do not have high speed networking like InfiniBand.

If you launch with slurm, the command is the same as that on single machine described above, but you need refer to
slurm_train.sh to set appropriate parameters and environment variables.

4.3.4 Launch multiple jobs on a single machine

If you launch multiple jobs on a single machine, e.g., 2 jobs of 4-GPU training on a machine with 8 GPUs, you need
to specify different ports (29500 by default) for each job to avoid communication conflict.

If you use dist_train. sh to launch training jobs:

CUDA_VISIBLE_DEVICES=0,1,2,3 PORT=29500 sh tools/xxx/dist_train.sh ${CONFIG_FILE} 4 --
—work_dir tmp_work dir_1
CUDA_VISIBLE_DEVICES=4,5,6,7 PORT=29501 sh tools/xxx/dist_train.sh ${CONFIG_FILE} 4 --
—work_dir tmp_work_dir_2

If you use launch training jobs with slurm, you have two options to set different communication ports:
Option 1:
In configl.py:

dist_params = dict(backend='nccl', port=29500)

In config2.py:

dist_params = dict(backend='nccl', port=29501)

Then you can launch two jobs with configl.py and config2.py.

CUDA_VISIBLE_DEVICES=0,1,2,3 GPUS=4 sh tools/slurm_train.sh ${PARTITION} ${JOB_NAME}..
—configl.py tmp_work_ dir_1
CUDA_VISIBLE_DEVICES=4,5,6,7 GPUS=4 sh tools/slurm_train.sh ${PARTITION} ${JOB_NAME}..
—config2.py tmp_work_dir_2

Option 2:

You can set different communication ports without the need to modify the configuration file, but have to set the
cfg-options to overwrite the default port in configuration file.

4.3. Train with different devices 13



https://github.com/open-mmlab/mmselfsup/blob/master/tools/slurm_train.sh
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CUDA_VISIBLE_DEVICES=0,1,2,3 GPUS=4 sh tools/slurm_train.sh ${PARTITION} ${JOB_NAME}..
—configl.py tmp_work_dir_1 --cfg-options dist_params.port=29500
CUDA_VISIBLE_DEVICES=4,5,6,7 GPUS=4 sh tools/slurm_train.sh ${PARTITION} ${JOB_NAME}..
—config2.py tmp_work dir_2 --cfg-options dist_params.port=29501

4.4 Test a model

4.4.1 NAS

To test nas method, you can use the following command.

python tools/test.py ${CONFIG_FILE} ${CHECKPOINT_PATH} --cfg-options algorithm.fix_
—subnet=${FIX_SUBNET_PATH} [optional arguments]

e FIX_SUBNET_PATH: Path of fix_subnet. fix_subnet represents config for mutable of the subnet searched
out, used to specify different subnets for testing. An example for fix_subnet can be found here.

The usage of optional arguments are the same as corresponding tasks like mmclassification, mmdetection and mmseg-
mentation.

For example,

python tools/test.py \
configs/nas/mmcls/spos/spos_subnet_shufflenetv2_8xb128_inlk.py \
your_subnet_checkpoint_path \
--cfg-options algorithm.fix_subnet=configs/nas/mmcls/spos/SPOS_SHUFFLENETV2_330M_IN1k_
—PAPER.yaml

4.4.2 Pruning
Split Checkpoint(Optional)

If you train a slimmable model during retraining, checkpoints of different subnets are actually fused in only one check-
point. You can split this checkpoint to multiple independent checkpoints by using the following command

python tools/model_converters/split_checkpoint.py ${CONFIG_FILE} ${CHECKPOINT_PATH} --
—.channel-cfgs ${CHANNEL_CFG_PATH} [optional arguments]

e CHANNEL_CFG_PATH: A list of paths of channel_cfg. For example, when you retrain a slimmable model, your
command will be like --cfg-options algorithm.channel_cfg=cfgl,cfg2,cfg3. And your command
here should be --channel-cfgs cfgl cfg2 cfg3. The order of them should be the same.

For example,

python tools/model_converters/split_checkpoint.py \

configs/pruning/autoslim/autoslim mbv2_subnet_8xb256_inlk.py \

your_retraining_checkpoint_path \

--channel-cfgs configs/pruning/autoslim/AUTOSLIM_MBV2_530M_OFFICIAL.yaml configs/
—pruning/autoslim/AUTOSLIM_MBV2_320M_OFFICIAL.yaml configs/pruning/autoslim/AUTOSLIM_
—MBV2_220M_OFFICIAL.yaml

14 Chapter 4. Train & Test



https://github.com/open-mmlab/mmrazor/blob/master/configs/nas/spos/SPOS_SHUFFLENETV2_330M_IN1k_PAPER.yaml
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Test

To test pruning method, you can use following command

python tools/test.py ${CONFIG_FILE} ${CHECKPOINT_PATH} --cfg-options model._channel_cfg_
—paths=${CHANNEL_CFG_PATH} [optional arguments]

¢ task: one of mmclsmmdet and mmseg

e CHANNEL_CFG_PATH: Path of channel_cfg. channel_cfg represents config for channel of the subnet
searched out, used to specify different subnets for testing. An example for channel_cfg can be found here,
and the usage can be found here.

For example,

python ./tools/test.py \
configs/pruning/mmcls/autoslim/autoslim_mbv2__1.5x_subnet_8xb256_inlk-530M.py \
your_splitted_checkpoint_path --metrics accuracy

4.4.3 Distillation

To test the distillation method, you can use the following command

python tools/test.py ${CONFIG_FILE} ${CHECKPOINT_PATH} [optional arguments]

For example,

python ./tools/test.py \
configs/distill/mmseg/cwd/cwd_logits_pspnet_rl101_d8_pspnet_r18_d8_512x1024_cityscapes_
~80k.py \
your_splitted_checkpoint_path --show

4.4. Test a model 15



https://github.com/open-mmlab/mmrazor/blob/master/configs/pruning/autoslim/AUTOSLIM_MBV2_220M_OFFICIAL.yaml
https://github.com/open-mmlab/mmrazor/blob/master/configs/pruning/autoslim/README.md#test-a-subnet
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CHAPTER
FIVE

QUANTIZATION

5.1 Quantization

5.1.1 Introduction

MMRazor’s quantization is OpenMMLab’s quantization toolkit, which has got through task models and model deploy-
ment. With its help, we can quantize and deploy pre-trained models in OpenMMLab to specified backend quickly. Of
course, it can also contribute to implementing some custom quantization algorithms easier.

Major features
* Ease of use. Benefited from PyTorch fx, we can quantize our model without modifying the original model, but
with user-friendly config.

* Multiple backends deployment support. Because of the specificity of each backend, a gap in performance
usually exists between before and after deployment. We provided some common backend deployment support
to reduce the gap as much.

* Multiple task repos support. Benefited from OpenMMLab 2.0, our quantization can support all task repos of
OpenMMLab without extra code.

* Be compatible with PyTorch’s core module in quantization. Some core modules in PyTorch can be used
directly in mmrazor, such as Observer, FakeQuantize, BackendConfig and so on.

5.1.2 Quick run

Note: MMRazor’s quantization is based on torch==1.13. Other requirements are the same as MMRazor’s

Model quantization is in mmrazor, but quantized model deployment is in mmdeploy. So we need to the another branches
as follows if we need to delopy our quantized model:

mmdeploy: https://github.com/open-mmlab/mmdeploy/tree/for_mmrazor

Note: If you try to compress mmdet’'s models and have used dense_heads, you can use this branch:
https://github.com/HIT-cwh/mmdetection/tree/for_mmrazor to avoid the problem that some code can not be traced
by torch. fx.tracer.

1. Quantize the float model in mmrazor.

17
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# For QAT (Quantization Aware Training)
python tools/train.py CONFIG_PATH} [optional arguments]

# For PTQ (Post-training quantization)
python tools/ptq.py ${CONFIG_PATH}! [optional arguments]

2. Evaluate the quantized model. (optional)

python tools/test.py ${CONFIG PATH} §{CHECKPOINT PATH

3. Export quantized model to a specific backend in mmdeploy. (required by model deployment)

# MODEL_CFG_PATH is the used config in mmrazor.
python ./tools/deploy.py \
DEPLOY_CFG_PATH} \
MODEL_CFG_PATH} \
MODEL_CHECKPOINT_PATH} \
INPUT_IMG} \
[optional arguments]

This step is the same as how to export an OpenMMLab model to a specific backend. For more details, please refer to
How to convert model

4. Evaluate the quantized backend model. (optional)

python tools/test.py \
DEPLOY_CFG} \
MODEL_CFG} \
--model BACKEND_MODEL_FILES} \
[optional arguments]

This step is the same as evaluating backend models. For more details, please refer to How to evaluate model

5.1.3 How to quantize your own model quickly

If you want to try quantize your own model quickly, you just need to learn about how to change our provided config.
Case 1: If the model you want to quantize is in our provided configs.

You can refer to the previous chapter Quick Run.

Case 2: If the model you want to quantize is not in our provided configs.

Let us take resnet50 as an example to show how to handle case 2.

_base_ = [
'mmcls: :resnet/resnetl18_8xb32_inlk.py',
'../../deploy_cfgs/mmcls/classification_openvino_dynamic-224x224.py"
]

val_dataloader = dict(batch_size=32)
test_cfg = dict(

type="mmrazor.PTQLoop"',
calibrate_dataloader=val_dataloader,

(continues on next page)
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calibrate_steps=32,

)

global_qconfig = dict(

w_observer=dict(type="mmrazor.PerChannelMinMaxObserver"),
a_observer=dict (type="mmrazor.MovingAverageMinMaxObserver'),
w_fake_quant=dict (type="mmrazor.FakeQuantize'),
a_fake_quant=dict(type="mmrazor.FakeQuantize'),
w_qgscheme=dict(

gdtype="qgint8"', bit=8, is_symmetry=True, is_symmetric_range=True),
a_qgscheme=dict(

gdtype="quint8', bit=8, is_symmetry=True, averaging_constant=0.1),

)

float_checkpoint = 'https://download.openmmlab.com/mmclassification/v0/resnet/resnet18_
—8xb32_inlk_20210831-fbbblda6.pth' # noga: E501

model = dict(
_delete_=True,
type="mmrazor.MMArchitectureQuant',
data_preprocessor=dict(
type="mmcls.ClsDataPreprocessor’,
num_classes=1000,
# RGB format normalization parameters
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
# convert image from BGR to RGB
to_rgb=True),
architecture=_base_.model,
deploy_cfg=_base_.deploy_cfg,
float_checkpoint=float_checkpoint,
quantizer=dict(
type="mmrazor.OpenVINOQuantizer',
global_gconfig=global_qgconfig,
tracer=dict(
type="mmrazor.CustomTracer',
skipped_methods=[
'mmcls.models.heads.ClsHead._get_loss',
'mmcls.models.heads.ClsHead._get_predictions’

DM

model_wrapper_cfg = dict(type="mmrazor.MMArchitectureQuantDDP', )

This is a config that quantize resnet18 with OpenVINO backend. You just need to modify two args: _base_ and
float_checkpoint.

# before
_base_ = ['mmcls::resnet/resnetl18_8xb32_inlk.py"']
float_checkpoint = 'https://download.openmmlab.com/mmclassification/v0/resnet/resnetl8_

—8xb32_inlk_20210831-fbbblda6.pth'

# after

(continues on next page)
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(continued from previous page)

_base_ = ['mmcls::resnet/resnet50_8xb32_inlk.py']
float_checkpoint = 'https://download.openmmlab.com/mmclassification/v0/resnet/resnet50_
—8xb32_inlk_20210831-ea4938fc.pth'

¢ _base_ will be called from mmcls by mmengine, so you can just use mmcls provided configs directly. Other
repos are similar.

e float_checkpoint is a pre-trained float checkpoint by OpenMMLab. You can find it in the corresponding
repo.

After modifying required config, we can use it the same as case 1.

5.1.4 How to improve your quantization performance

If you can not be satisfied with quantization performance by applying our provided configs to your own model, you can
try to improve it with our provided various quantization schemes by modifying global_qconfig.

global_qconfig = dict(

w_observer=dict (type="mmrazor.PerChannelMinMaxObserver'),
a_observer=dict (type="mmrazor.MovingAverageMinMaxObserver'),
w_fake_quant=dict (type="mmrazor.FakeQuantize'),
a_fake_quant=dict(type="mmrazor.FakeQuantize'),
w_qgscheme=dict(

qgdtype="qgint8"', bit=8, is_symmetry=True, is_symmetric_range=True),
a_qgscheme=dict(

gdtype="quint8', bit=8, is_symmetry=True, averaging_constant=0.1),

As shown above, global_gconfig contains server common core args as follows:
* Observes

In forward, they will update the statistics of the observed Tensor. And they should provide a calculate_qgparams
function that computes the quantization parameters given the collected statistics.

Note: Whether it is per channel quantization depends on whether PerChannel is in the observer name.

Because mmrazor’s quantization has been compatible with PyTorch’s observers, we can use observers in PyTorch and
our custom observers.

Supported observers list in Pytorch.

FixedQParamsObserver
HistogramObserver

MinMaxObserver
MovingAverageMinMaxObserver
MovingAveragePerChannelMinMaxObserver
NoopObserver

ObserverBase

PerChannelMinMaxObserver
PlaceholderObserver

RecordingObserver

(continues on next page)
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ReuseInputObserver
UniformQuantizationObserverBase

» Fake quants

In forward, they will update the statistics of the observed Tensor and fake quantize the input. They should also provide
a calculate_gparams function that computes the quantization parameters given the collected statistics.

Because mmrazor’s quantization has been compatible with PyTorch’s fakequants, we can use fakequants in PyTorch
and our custom fakequants.

Supported fakequants list in Pytorch.

FakeQuantize

FakeQuantizeBase
FixedQParamsFakeQuantize
FusedMovingAvgObsFakeQuantize

¢ Qschemes
Include some basic quantization configurations.

qgdtype: to specify whether quantized data type is sign or unsign. It can be chosen from [ ‘qint8’, ‘quint8’ ]

Note: If your model need to be deployed, qdtype must be consistent with the dtype in the corresponding backend-
config. Otherwise fakequant will not be inserted in front of the specified OPs.

backendconfigs dir: mmrazor/mmrazor/structures/quantization/backend_config

bit: to specify the quantized data bit. It can be chosen from [1 ~ 16].
is_symmetry: to specify whether to use symmetry quantization. It can be chosen from [ True, False ]

The specified gscheme is actually implemented by observers, so how to configurate other args needs to be based on the
given observers, such as is_symmetric_range and averaging_constant.

5.1.5 How to customize your quantization algorithm

If you try to customize your quantization algorithm, you can refer to the following link for more details.

Customize Quantization algorithms
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SIX

USEFUL TOOLS

please refer to upstream applied repositories’ docs
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CHAPTER
SEVEN

KEY CONCEPTS

7.1 Algorithm

7.1.1 Introduction

What is algorithm in MMRazor

MMRazor is a model compression toolkit, which includes 4 mianstream technologies:

¢ Neural Architecture Search (NAS)

e Pruning

* Knowledge Distillation (KD)

¢ Quantization (come soon)
And in MMRazor, algorithm is a general item for these technologies. For example, in NAS,
SPOS is an algorithm, CWD is also an algorithm of knowledge distillation.

algorithm is the entrance of mmrazor/models . Its role in MMRazor is the same as both classifier in MMClas-
sification and detector in MMDetection.

About base algorithm

In the directory of models/algorithms, all model compression algorithms are divided into 4 subdirectories: nas /
pruning / distill / quantization. These algorithms must inherit from BaseAlgorithm, whose definition is as below.

from typing import Dict, List, Optional, Tuple, Union
from mmengine.model import BaseModel
from mmrazor.registry import MODELS

LossResults = Dict[str, torch.Tensor]

TensorResults = Union[Tuple[torch.Tensor], torch.Tensor]
PredictResults = List[BaseDataElement]

ForwardResults = Union[LossResults, TensorResults, PredictResults]

@MODELS .register_module()
class BaseAlgorithm(BaseModel):

def __init__(self,
architecture: Union[BaseModel, Dict],

(continues on next page)
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data_preprocessor: Optional[Union[Dict, nn.Module]] = None,
init_cfg: Optional[Dict] = None):

super().__init__(data_preprocessor, init_cfg)
self.architecture = architecture

def forward(self,
batch_inputs: torch.Tensor,
data_samples: Optional[List[BaseDataElement]] = None,

mode: str = 'tensor') -> ForwardResults:
if mode == 'loss':
return self.loss(batch_inputs, data_samples)
elif mode == 'tensor':
return self._forward(batch_inputs, data_samples)
elif mode == 'predict':
return self._predict(batch_inputs, data_samples)

else:
raise RuntimeError(f'Invalid mode mode
'Only supports loss, predict and tensor mode')

n n v

def loss(
self,
batch_inputs: torch.Tensor,
data_samples: Optional[List[BaseDataElement]] = None,
) -> LossResults:
"""Calculate losses from a batch of inputs and data samples.
return self.architecture(batch_inputs, data_samples, mode='loss')

e

def _forward(

self,

batch_inputs: torch.Tensor,

data_samples: Optional[List[BaseDataElement]] = None,
) -> TensorResults:

Network forward process.
return self.architecture(batch_inputs, data_samples, mode='tensor')

mirn

def _predict(
self,
batch_inputs: torch.Tensor,
data_samples: Optional[List[BaseDataElement]] = None,
) -> PredictResults:
"""Predict results from a batch of inputs and data samples with post-
processing. """
return self.architecture(batch_inputs, data_samples, mode='predict')

As you can see from above, BaseAlgorithm is inherited from BaseModel of MMEngine. BaseModel implements
the basic functions of the algorithmic model, such as weights initialize,

batch inputs preprocess (see more information in BaseDataPreprocessor class of MMEngine), parse losses, and
update model parameters. For more details of BaselModel , you can see docs for BaselModel.

26
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BaseAlgorithm’s forward is just a wrapper of BaseModel’s forward. Sub-classes inherited from BaseAlgorithm only
need to override the 1oss method, which implements the logic to calculate loss, thus various algorithms can be trained
in the runner.

7.1.2 How to use existing algorithms in MMRazor

1. Configure your architecture that will be slimmed

* Use the model config of other repos of OpenMMLab directly as below, which is an example of setting Faster-
RCNN as our architecture.

_base_ = [
'mmdet::_base_/models/faster_rcnn_r50_fpn.py"',

]

architecture = _base_.model

 Use your customized model as below, which is an example of defining a VGG model as our architecture.

Note: How to customize architectures can refer to our tutorial: Customize Architectures.

default_scope="mmcls'
architecture = dict(
type="'ImageClassifier',
backbone=dict(type="'VGG', depth=11, num_classes=1000),
neck=None,
head=dict(
type="ClsHead',
loss=dict(type="CrossEntropyLoss', loss_weight=1.0),
topk=(1, 5),
)

2. Apply the registered algorithm to your architecture.

Note: The arg name of algorithm in config is model rather than algorithm in order to get better supports of MMCV
and MMEngine.

Maybe more args in model need to set according to the used algorithm.

model = dict(
type="'BaseAlgorithm',
architecture=architecture)

Note: About the usage of Config, refer to config.md please.

3. Apply some custom hooks or loops to your algorithm. (optional)

¢ Custom hooks
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custom_hooks = [
dict(type="NaiveVisualizationHook', priority='LOWEST'),

* Custom loops

_base_ = ['./spos_shufflenet_supernet_8xb128_inlk.py"']

# To chose from ['train_cfg', 'val_cfg', 'test_cfg'] based on your loop type
train_cfg = dict(
_delete_=True,
type="mmrazor.EvolutionSearchLoop',
dataloader=_base_.val_dataloader,
evaluator=_base_.val_evaluator)

val_cfg = dict(Q
test_cfg = dict()

7.1.3 How to customize your algorithm

Common pipeline

1. Register a new algorithm

Create a new file mmrazor/models/algorithms/{subdirectory}/xxx.py

from mmrazor.models.algorithms import BaseAlgorithm
from mmrazor.registry import MODELS

@MODELS .register_module()
class XXX(BaseAlgorithm):
def __init__(self, architecture):
super().__init__(architecture)
pass

def loss(self, batch_inputs):
pass

2. Rewrite its 1oss method.

from mmrazor.models.algorithms import BaseAlgorithm
from mmrazor.registry import MODELS

@MODELS . register_module()
class XXX(BaseAlgorithm):
def __init__(self, architecture):
super().__init__(architecture)

return LossResults
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3. Add the remaining functions of the algorithm

Note: This step is special because of the diversity of algorithms. Some functions of the algorithm may also be
implemented in other files.

from mmrazor.models.algorithms import BaseAlgorithm
from mmrazor.registry import MODELS

@MODELS .register_module()
class XXX(BaseAlgorithm):
def __init__(self, architecture):
super().__init__(architecture)

return LossResults

def aaa(self):

4. Import the class

You can add the following line to mmrazor/models/algorithms/{subdirectory}/__init__.py

from .xxx import XXX

_all__ = ['XXX']

In addition, import XXX in mmrazor/models/algorithms/__init__.py
5. Use the algorithm in your config file.

Please refer to the previous section about how to use existing algorithms in MMRazor

model = dict(
type="XXX",
architecture=architecture)

Pipelines for different algorithms

Please refer to our tutorials about how to customize different algorithms for more details as below.
1. NAS

Customize NAS algorithms
2. Pruning

Customize Pruning algorithms
3. Distill

Customize KD algorithms
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7.2 Mutator

7.2.1 Introduction

What is Mutator
Mutator is one of algorithm components, which provides some useful functions used for mutable management, such

as sample choice, set choicet and so on. With Mutator’s help, you can implement some NAS or pruning algorithms
quickly.

What is the relationship between Mutator and Mutable

SuperNet

Mutable

In a word, Mutator is the manager of Mutable. Each different type of mutable is commonly managed by their one
correlative mutator, respectively.

As shown in the figure, Mutable is a component of supernet, therefore Mutator can implement some functions about
subnet from supernet by handling Mutable.
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Supported mutators

In MMRazor, we have implemented some mutators, their relationship is as below.

Class
BaseMutator
Class Class
ModuleMutator ChannelMutator
Class Class Class Class
OneShotModuleMutator DiffModuleMutator OneShotChannelMutator SlimmableChannelMutator

BaseMutator: Base class for all mutators. It has appointed some abstract methods supported by all mutators.

ModulelMuator/ ChannelMutator: Two different types mutators are for handling mutable module and mutable chan-
nel respectively.

Note: Please refer to Mutable for more details about different types of mutable.

OneShotModuleMutator / DiffModuleMutator: Inherit from ModuleMuator, they are for implementing different
types algorithms, such as SPOS, Darts and so on.

OneShotChannelMutator/SlimmableChannelMutator: Inherit from ChannelMutator, they are also for meeting
the needs of different types algorithms, such as AotuSlim.

7.2.2 How to use existing mutators

You just use them directly in configs as below

supernet = dict(
)

model = dict(
type="mmrazor.SPOS"',

(continues on next page)
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architecture=supernet,
mutator=dict (type="mmrazor.OneShotModuleMutator'))

If existing mutators do not meet your needs, you can also customize your needed mutator.

7.2.3 How to customize your mutator

All mutators need to implement at least two of the following interfaces
e prepare_from_supernet ()

— Make some necessary preparations according to the given supernet. These preparations may include, but
are not limited to, grouping the search space, and initializing mutator with the parameters needed for itself.

* search_groups
— Group of search space.

— Note that search groups and search space are two different concepts. The latter defines what choices can
be used for searching. The former groups the search space, and searchable blocks that are grouped into the
same group will share the same search space and the same sample result.

# Example
search_space {opl, op2, op3, op4}
search_group = {0: [opl, op2], 1: [op3, op4]}

There are 4 steps to implement a custom mutator.
1. Registry a new mutator
2. Implement abstract methods
3. Implement other methods
4. Import the class
Then you can use your customized mutator in configs as in the previous chapter.

Let’s use OneShotModuleMutator as an example for customizing mutator.

1.Registry a new mutator
First, you need to determine which type mutator to implement. Thus, you can implement your mutator faster by
inheriting from correlative base mutator.

Then create a new file mmrazor/models/mutators/module_mutator/one_shot_module_mutator, class
OneShotModuleMutator inherits from ModuleMutator.

from mmrazor.registry import MODELS
from .module_mutator import ModuleMutator

@MODELS .register_module()
class OneShotModuleMutator (ModuleMutator) :
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2. Implement abstract methods

2.1. Rewrite the mutable_class_type property

@MODELS . register_module ()
class OneShotModuleMutator (ModuleMutator):

@property
def mutable_class_type(self):
"""One-shot mutable class type.
Returns:
Type[OneShotMutableModule]: Class type of one-shot mutable.

o

return OneShotMutableModule

2.2. Rewrite search_groups and prepare_from_supernet ()

As the prepare_from_supernet() method and the search_groups property are already implemented in the
ModuleMutator and we don’t need to add our own logic, the second step is already over.

If you need to implement them by yourself, you can refer to these as follows.
2.3. Understand search_groups (optional)

Let’s take an example to see what default search_groups do.

from mmrazor.models import OneShotModuleMutator, OneShotMutableModule

class SearchablelModel (nn.Module) :
def __init__(self, one_shot_op_cfg):
# assume ‘“OneShotMutableModule® contains 4 choices:
# choicel, choice2, choice3 and choice4
self.choice_blockl = OneShotMutableModule(**one_shot_op_cfg)
self.choice_block2 = OneShotMutableModule(**one_shot_op_cfg)
self.choice_block3 = OneShotMutableModule(**one_shot_op_cfg)

def forward(self, x: Tensor) -> Tensor:
X = self.choice_blockl(x)
X self.choice_block2(x)
X = self.choice_block3(x)

return x

supernet = SearchableModel (one_shot_op_cfg)
mutatorl = OneShotModuleMutator()

# build mutatorl from supernet.
mutatorl.prepare_from_supernet(supernet)
>>> mutatorl.search_groups.keys()
dict_keys([0, 1, 2])

In this case, each OneShotMutableModule will be divided into a group. Thus, the search groups have 3 groups.

If you want to custom group according to your requirement, you can implement it by passing the arg custom_group.

custom_group = [
['opl', 'op2'],

(continues on next page)
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['op3']
]
mutator2 = OneShotMutator(custom_group)
mutator2.prepare_from_supernet(supernet)

Then choice_blockl and choice_block2 will share the same search space and the same sample result, and
choice_block3 will have its own independent search space. Thus, the search groups have only 2 groups.

>>> mutator2.search_groups.keys()
dict_keys([0, 11)

3. Implement other methods

After finishing some required methods, we need to add some special methods, such as sample_choices and
set_choices.

from typing import Any, Dict

from mmrazor.registry import MODELS
from ...mutables import OneShotMutableModule
from .module_mutator import ModuleMutator

@MODELS .register_module()
class OneShotModuleMutator (ModuleMutator) :

def sample_choices(self) -> Dict[int, Any]:

"""Sampling by search groups.

The sampling result of the first mutable of each group is the sampling

result of this group.

Returns:
Dict[int, Any]: Random choices dict.

random_choices = dict()

for group_id, modules in self.search_groups.items():
random_choices[group_id] = modules[0].sample_choice()

return random_choices

def set_choices(self, choices: Dict[int, Any]) -> None:
"""Set mutables' current choice according to choices sample by
:func: sample_choices’.
Args:
choices (Dict[int, Any]): Choices dict. The key is group_id in
search groups, and the value is the sampling results
corresponding to this group.
for group_id, modules in self.search_groups.items():
choice = choices[group_id]
for module in modules:
module.current_choice = choice

(continues on next page)
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@property
def mutable_class_type(self):
"""One-shot mutable class type.
Returns:
Type[OneShotMutableModule]: Class type of one-shot mutable.

i

return OneShotMutableModule

4. Import the class

You can either add the following line to mmrazor/models/mutators/module_mutator/__init__.py

from .one_shot_module_mutator import OneShotModuleMutator

all__ = ['OneShotModuleMutator']

or alternatively add

custom_imports = dict(
imports=[ 'mmrazor.models.mutators.module_mutator.one_shot_module_mutator'],
allow_failed_imports=False)

to the config file to avoid modifying the original code.

Customize OneShotModuleMutator is over, then you can use it directly in your algorithm.

7.3 Mutable

7.3.1 Introduction

What is Mutable
Mutable is one of basic function components in NAS algorithms and some pruning algorithms, which makes supernet
searchable by providing optional modules or parameters.

To understand it better, we take the mutable module as an example to explain as follows.

SuperNet

Mutable

“—Manage all of the mutables— Mutator

‘ op1 ’ ‘ op2 ’ ‘ op3 ’

7.3. Mutable 35




mmrazor

As shown in the figure above, Mutable is a container that holds some candidate operations, thus it can sample candi-
dates to constitute the subnet. Supernet usually consists of multiple Mutable, therefore, Supernet will be searchable
with the help of Mutable. And all candidate operations in Mutable constitute the search space of SuperNet.

Note: If you want to know more about the relationship between Mutable and Mutator, please refer to Mutator

Features

1. Support module mutable

It is the common and basic function for NAS algorithms. We can use it to implement some classical one-shot NAS
algorithms, such as SPOS, DetNAS and so on.

2. Support parameter mutable

To implement more complicated and funny algorithms easier, we supported making some important parameters search-
able, such as input channel, output channel, kernel size and so on.

What is more, we can implement dynamic op by using mutable parameters.

3. Support deriving from mutable parameter

Because of the restriction of defined architecture, there may be correlations between some mutable parameters, such
as concat and expand ratio.

Note: If conv3 = concat (convl, conv2)
When out_channel (convl) = 3, out_channel (conv2) =4
Then in_channel (conv3) must be 7 rather than mutable.

So use derived mutable from convl and conv2 to generate in_channel (conv3)

With the help of derived mutable, we can meet these special requirements in some NAS algorithms and pruning algo-
rithms. What is more, it can be used to deal with different granularity between search spaces.
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Supported mutables

Class Class
BaseMutable DerivedMethodMixin
Class Class Class
MutableModule MutableChannel MutableValue
N
Class Class Class Class Class
OneShotMutableModule DiffMutableModule OneShotMutableChannel| | SlimmableMutableChannel OneShotMutableValue
A N
Class Class
OneShotMutableOP DiffMutableOP
A A
Class Class
OneShotProbMutableOP DiffChoiceRoute
Class
GumbelChoiceRoute

As shown in the figure above.

* White blocks stand the basic classes, which include BaseMutable and DerivedMethodMixin. BaseMutable
is the base class for all mutables, which defines required properties and abstracmethods. DerivedMethodMixin
is a mixin class to provide mutable parameters with some useful methods to derive mutable.

* Gray blocks stand different types of base mutables.

Note: Because there are correlations between channels of some layers, we divide mutable parameters into
MutableChannel and MutableValue, so you can also think MutableChannel is a special MutableValue.

For supporting module and parameters mutable, we provide MutableModule, MutableChannel
and MutableValue these base classes to implement required basic functions. = And we also add
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OneshotMutableModule and DiffMutableModule two types based on MutableModule to meet differ-
ent types of algorithms’ requirements.

For supporting deriving from mutable parameters, we make MutableChannel and MutableValue in-
herit from BaselMutable and DerivedMethodMixin, thus they can get derived functions provided by
DerivedMethodMixin.

* Red blocks and green blocks stand registered classes for implementing some specific algorithms, which means
that you can use them directly in configs. If they do not meet your requirements, you can also customize your
mutable based on our base classes. If you are interested in their realization, please refer to their docstring.

7.3.2 How to use existing mutables to configure searchable backbones

We will use OneShotMutableOP to build a SearchableShuffleNetV2 backbone as follows.

1. Configure needed mutables

# we only use OneShotMutableOP, then take 4 ShuffleOP as its candidates.
_STAGE_MUTABLE = dict(
_scope_='"mmrazor"',
type="'OneShotMutableOP"',
candidates=dict(
shuffle_3x3=dict(type='ShuffleBlock', kernel_size=3),
shuffle_5x5=dict(type='ShuffleBlock', kernel_size=5),
shuffle_7x7=dict(type='ShuffleBlock', kernel_size=7),
shuffle_xception=dict(type="'"ShuffleXception')))

2. Configure the arch_setting of SearchableShuffleNetV2

# Use the _STAGE_MUTABLE in various stages.
arch_setting = [
# Parameters to build layers. 3 parameters are needed to construct a
# layer, from left to right: channel, num_blocks, mutable_cfg.
[64, 4, _STAGE_MUTABLE],
[160, 4, _STAGE_MUTABLE],
[320, 8, _STAGE_MUTABLE],
[640, 4, _STAGE_MUTABLE]

3. Configure searchable backbone.

nas_backbone = dict(
_scope_="mmrazor"',
type="'SearchableShuffleNetV2',
widen_factor=1.0,
arch_setting=arch_setting)

Then you can use it in your architecture. If existing mutables do not meet your needs, you can also customize your
needed mutable.
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7.3.3 How to customize your mutable

About base mutable

Before customizing mutables, we need to know what some base mutables do.
BaseMutable

In order to implement the searchable mechanism, mutables need to own some base functions, such as changing status
from mutable to fixed, recording the current status and current choice and so on. So in BaseMutable, these relevant
abstract methods and properties will be defined as follows.

# Copyright (c) OpenMMLab. All rights reserved.
from abc import ABC, abstractmethod
from typing import Dict, Generic, Optional, TypeVar

from mmengine.model import BaseModule

CHOICE_TYPE
CHOSEN_TYPE

TypeVar ('CHOICE_TYPE")
TypeVar ('CHOSEN_TYPE")

class BaseMutable(BaseModule, ABC, Generic[CHOICE_TYPE, CHOSEN_TYPE]):

def __init__(self,
alias: Optional[str] = None,
init_cfg: Optional[Dict] = None) -> None:
super().__init__(init_cfg=init_cfg)

self.alias = alias
self._is_fixed = False
self._current_choice: Optional [CHOICE_TYPE] = None

@property
def current_choice(self) -> Optional [CHOICE_TYPE]:
return self._current_choice

@current_choice.setter
def current_choice(self, choice: Optional [CHOICE_TYPE]) -> None:
self._current_choice = choice

@property
def is_fixed(self) -> bool:
return self._is_fixed

@is_fixed.setter
def is_fixed(self, is_fixed: bool) -> None:

self._is_fixed = is_fixed
@abstractmethod
def fix_chosen(self, chosen: CHOSEN_TYPE) -> None:

pass

@abstractmethod

(continues on next page)
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def dump_chosen(self) -> CHOSEN_TYPE:
pass

@property

@abstractmethod

def num_choices(self) -> int:
pass

MutableModule

Inherited from BaseModule, MutableModule not only owns its basic functions, but also needs some specialized
functions to implement module mutable, such as getting all choices, executing forward computation.

# Copyright (c) OpenMMLab. All rights reserved.
from abc import abstractmethod
from typing import Any, Dict, List, Optional

from ..base_mutable import CHOICE_TYPE, CHOSEN_TYPE, BaselMutable
class MutableModule(BaseMutable[CHOICE_TYPE, CHOSEN_TYPE]):

def __init__(self,
module_kwargs: Optional[Dict[str, Dict]] = None,
**kwargs) -> None:
super().__init__ (**kwargs)

self.module_kwargs = module_kwargs

@property
@abstractmethod
def choices(self) -> List[CHOICE_TYPE]:
"""list: all choices. All subclasses must implement this method."""

@abstractmethod

def forward(self, x: Any) -> Any:
"""Forward computation."""

@property

def num_choices(self) -> int:
"""Number of choices."""
return len(self.choices)

If you want to know more about other types mutables, please refer to their docstring.
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Steps of customizing mutables

There are 4 steps to implement a custom mutable.
1. Registry a new mutable
2. Implement abstract methods.
3. Implement other methods.
4. Import the class
Then you can use your customized mutable in configs as in the previous chapter.

Let’s use OneShotMutableOP as an example for customizing mutable.

1. Registry a new mutable

First, you need to determine which type mutable to implement. Thus, you can implement your mutable faster by
inheriting from correlative base mutable.

Then create a new file mmrazor/models/mutables/mutable_module/one_shot_mutable_module, class
OneShotMutableOP inherits from OneShotMutableModule.

# Copyright (c) OpenMMLab. All rights reserved.
import random

from abc import abstractmethod

from typing import Any, Dict, List, Optional, Union

import numpy as np
import torch.nn as nn
from torch import Tensor

from mmrazor.registry import MODELS
from ..base_mutable import CHOICE_TYPE, CHOSEN_TYPE
from .mutable_module import MutableModule

@MODELS .register_module()
class OneShotMutableOP (OneShotMutableModule[str, str]):

2. Implement abstract methods
2.1 Basic abstract methods

These basic abstract methods are mainly from BaseMutable and MutableModule, such as fix_chosen,
dump_chosen, choices and num_choices.

@MODELS .register_module()
class OneShotMutableOP (OneShotMutableModule[str, str]):

def fix_chosen(self, chosen: str) -> None:
"""Fix mutable with subnet config. This operation would convert

(continues on next page)
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‘unfixed” mode to “fixed mode. The :attr:'is_fixed will be set to
True and only the selected operations can be retained.
Args:
chosen (str): the chosen key in “MUTABLE™. Defaults to None.
if self.is_fixed:
raise AttributeError(
'The mode of current MUTABLE is " fixed . '
'Please do not call "fix_chosen’ function again.')

for c in self.choices:
if ¢ != chosen:
self._candidates.pop(c)

self._chosen = chosen
self.is_fixed = True

def dump_chosen(self) -> str:
assert self.current_choice is not None

return self.current_choice

@property
def choices(self) -> List[str]:
"""list: all choices. """
return list(self._candidates.keys())

@property
def num_choices(self):
return len(self.choices)

2.2 Specified abstract methods

In OneShotMutableModule, sample and forward these required abstract methods are defined, such as
sample_choice, forward_choice, forward_fixed, forward_all. So we need to implement these abstract meth-
ods.

@MODELS .register_module()
class OneShotMutableOP (OneShotMutableModule[str, str]):

def sample_choice(self) -> str:
"""uniform sampling.
return np.random.choice(self.choices, 1)[0]

e

def forward_fixed(self, x: Any) -> Tensor:
"""Forward with the “fixed mutable.
Args:
X (Any): x could be a Torch.tensor or a tuple of
Torch.tensor, containing input data for forward computation.
Returns:

(continues on next page)
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Tensor: the result of forward the fixed operation.

i

return self._candidates[self._chosen] (x)

def forward_choice(self, x: Any, choice: str) -> Tensor:
"""Forward with the ‘unfixed mutable and current choice is not None.
Args:
x (Any): x could be a Torch.tensor or a tuple of
Torch. tensor, containing input data for forward computation.
choice (str): the chosen key in “OneShotMutableOP .
Returns:
Tensor: the result of forward the “‘choice® operation.
assert isinstance(choice, str) and choice in self.choices
return self._candidates[choice] (x)

def forward_all(self, x: Any) -> Tensor:

"""Forward all choices. Used to calculate FLOPs.
Args:

x (Any): x could be a Torch.tensor or a tuple of

Torch. tensor, containing input data for forward computation.

Returns:

Tensor: the result of forward all of the “‘choice' operation.
outputs = list()
for op in self._candidates.values():

outputs.append(op(x))
return sum(outputs)

3. Implement other methods

After finishing some required methods, we need to add some special methods, such as _build_ops, because it is

needed in building candidates for sampling.

@MODELS . register_module ()
class OneShotMutableOP (OneShotMutableModule[str, str]):

@staticmethod
def _build_ops(
candidates: Union[Dict[str, Dict], nn.ModuleDict],
module_kwargs: Optional[Dict[str, Dict]] = None) -> nn.ModuleDict:
"""Build candidate operations based on choice configures.
Args:
candidates (dict[str, dict] | :obj:'nn.ModuleDict’): the configs
for the candidate operations or nn.ModuleDict.
module_kwargs (dict[str, dict], optional): Module initialization
named arguments.
Returns:
ModuleDict (dict[str, Any], optional): the key of “‘ops™ 1is
the name of each choice in configs and the value of “‘ops

NN

(continues on next page)
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is the corresponding candidate operation.
if isinstance(candidates, nn.ModuleDict):
return candidates

ops = nn.ModuleDict()
for name, op_cfg in candidates.items():
assert name not in ops
if module_kwargs is not None:
op_cfg.update(module_kwargs)
ops[name] = MODELS.build(op_cfg)
return ops

4. Import the class

You can either add the following line to mmrazor/models/mutables/mutable_module/__init__.py

from .one_shot_mutable_module import OneShotMutableModule

all__ = ['OneShotMutableModule']

or alternatively add

custom_imports = dict(
imports=[ 'mmrazor.models.mutables.mutable_module.one_shot_mutable_module'],
allow_failed_imports=False)

to the config file to avoid modifying the original code.

Customize OneShotMutableOP is over, then you can use it directly in your algorithm.

7.4 Recorder

7.4.1 Introduction of Recorder

Recorder is a context manager used to record various intermediate results during the model forward. It can help
Delivery finish data delivering by recording source data in some distillation algorithms. And it can also be used to
obtain some specific data for visual analysis or other functions you want.

To adapt to more requirements, we implement multiple types of recorders to obtain different types of intermediate
results in MMRazor. What is more, they can be used in combination with the RecorderManager.

In general, Recorder will help us expand more functions in implementing algorithms by recording various intermediate
results.
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7.4.2 Usage of Recorder

Currently, we support five Recorder, as shown in the following table

Recorder name Description
FunctionOutputsRecorder | Record output results of some functions
MethodOutputsRecorder | Record output results of some methods

ModulelnputsRecorder Record input results of nn.Module
ModuleOutputsRecorder | Record output results of nn.Module
ParameterRecorder Record intermediate parameters of nn.Module

All of the recorders inherit from BaseRecorder. And these recorders can be managed by RecorderManager or just
be used on their own.

Their relationship is shown below.

Class |
BaseRecorder |
Class Class | Class | Class
[
FunctionOutputsRecorder MethodOutputsRecorder | ModuleOutputsRecorder ParameterRecorder |
Class
ModuleInputsRecorder

| Class

RecorderManagerManager

FunctionOutputsRecorder

FunctionOutputsRecorder is used to record the output results of intermediate function.

Note: ~ When instantiating FunctionOutputsRecorder, you need to pass source argument, which requires
extra attention. For example, anchor_inside_flags is a function in mmdetection to check whether the an-
chors are inside the border. This function is in mmdet/core/anchor/utils.py and used in mmdet/models/
dense_heads/anchor_head. Then the source argument should be mmdet.models.dense_heads.anchor_head.
anchor_inside_flags but not mmdet.core.anchor.utils.anchor_inside_flags.
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Example

Suppose there is a toy function named toy_£func in toy_module.py.

import random
from typing import List
from mmrazor.structures import FunctionOutputsRecorder

def toy_func() -> int:
return random.randint(0, 1000000)

# instantiate with specifying used path
rl = FunctionOutputsRecorder('toy_module.toy_func')

# initialize is to make specified module can be recorded by
# registering customized forward hook.
rl.initialize()
with ril:
outl toy_module. toy_func()
out2 = toy_module.toy_func()
out3 toy_module. toy_func()

# check recorded data
print(rl.data_buffer)

Out:

[75486, 641059, 119729]

Test Correctness of recorded results

data_buffer = rl.data_buffer
print(data_buffer[0] == outl and data_buffer[1] == out2 and data_buffer[2] == out3)

Out:

True

To get the specific recorded data with get_record_data

print(rl.get_record_data(record_idx=2))

Out:

119729
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MethodOutputsRecorder

MethodOutputsRecorder is used to record the output results of intermediate method.

Example

Suppose there is a toy class Toy and it has a toy method toy_func in toy_module.py.

import random
from mmrazor.core import MethodOutputsRecorder

class Toy():
def toy_func(self):
return random.randint(®, 1000000)

toy = Toy(Q)

# instantiate with specifying used path

rl = MethodOutputsRecorder('toy_module.Toy.toy_func')

# initialize is to make specified module can be recorded by
# registering customized forward hook.

rl.initialize()

with ril:
outl = toy.toy_func()
out2 toy.toy_func()
out3 = toy.toy_func()

# check recorded data
print(rl.data_buffer)

Out:

[217832, 353057, 387699]

Test Correctness of recorded results

data_buffer = rl.data_buffer
print(data_buffer[0] == outl and data_buffer[1] == out2 and data_buffer[2] == out3)

Out:

True

To get the specific recorded data with get_record_data

print(rl.get_record_data(record_idx=2))

Out:

387699
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ModuleOutputsRecorder and ModulelnputsRecorder

ModuleOutputsRecorder’s usage is similar with ModuleInputsRecorder’s, so we will take the former as an ex-
ample to introduce their usage.

Example

Note:

Different MethodOutputsRecorder and FunctionOutputsRecorder, ModuleOutputsRecorder and
ModuleInputsRecorder are instantiated with module name rather than used path, and executing
initialize need arg: model. Thus, they can know actually the module needs to be recorded.

Suppose there is a toy Module ToyModule in toy_module.py.

import torch
from torch import nn
from mmrazor.core import ModuleOutputsRecorder

class ToyModel (nn.Module):
def __init__(self):
super().__init__Q
self.convl = nn.Conv2d(1l, 1, 1)
self.conv2 = nn.Conv2d(1l, 1, 1)

def forward(self, x):
x1 = self.convl(x)
x2 = self.convl(x + 1)
return self.conv2(xl + x2)

model = ToyModel ()
# instantiate with specifying module name.
rl = ModuleOutputsRecorder('convl"')

# initialize is to make specified module can be recorded by
# registering customized forward hook.
rl.initialize(model)

x = torch.randn(1, 1, 1, 1)
with ril:

out = model (x)

print(rl.data_buffer)

Out:

[tensor ([[[[0.0820]]1]1], grad_fn=<ThnnConv2DBackward®>), tensor([[[[-0.0894]]]], grad_fn=
—-<ThnnConv2DBackward0>)]

Test Correctness of recorded results
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print (torch.equal(rl.data_buffer[0], model.convl(x)))
print(torch.equal(rl.data_buffer[1], model.convli(x + 1)))

Out:

True
True

ParameterRecorder

ParameterRecorder is used to record the intermediate parameter of nn.Module

Its usage is similar to

ModuleOutputsRecorder’s and ModuleInputsRecorder’s, but it instantiates with parameter name instead of mod-

ule name.

Example

Suppose there is a toy Module ToyModule in toy_module.py.

from torch import nn
import torch
from mmrazor.core import ModuleOutputsRecorder

class ToyModel (nn.Module):
def __init__(self):
super().__init__Q
self.toy_conv = nn.Conv2d(1, 1, 1)

def forward(self, x):
return self.toy_conv(x)

model = ToyModel()

# instantiate with specifying parameter name.

rl = ParameterRecorder('toy_conv.weight')

# initialize is to make specified module can be recorded by
# registering customized forward hook.

rl.initialize(model)

print(rl.data_buffer)

Out:

[Parameter containing: tensor([[[[0.2971]]1]1], requires_grad=True)]

Test Correctness of recorded results

print(torch.equal(rl.data_buffer[0], model.toy_conv.weight))

Out:

True
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RecorderManager

RecorderManager is actually context manager, which can be used to manage various types of recorders.

With the help of RecorderManager, we can manage several different recorders with as little code as possible, which
reduces the possibility of errors.

Example

Suppose there is a toy class Toy owned has a toy method toy_func in toy_module.py.

import random
from torch import nn
from mmrazor.core import RecorderManager

class Toy():
def toy_func(self):
return random.randint(®, 1000000)

class ToyModel (nn.Module):
def __init__(self):
super() .__init__Q
self.convl = nn.Conv2d(1l, 1, 1)
self.conv2 = nn.Conv2d(1l, 1, 1)
self.toy = Toy(Q)

def forward(self, x):
return self.conv2(self.convl(x)) + self.toy.toy_func()

# configure multi-recorders
convl_rec = ConfigDict(type='ModuleOutputs', source='convl")
conv2_rec = ConfigDict(type='ModuleOutputs', source='conv2')
func_rec = ConfigDict(type="'MethodOutputs', source='toy_module.Toy.toy_func')
# instantiate RecorderManager with a dict that contains recorders' configs,
# you can customize their keys.
manager = RecorderManager(
{'convl_rec': convl_rec,
'conv2_rec': conv2_rec,
'func_rec': func_rec})

model = ToyModel()

# initialize is to make specified module can be recorded by
# registering customized forward hook.
manager.initialize(model)

x = torch.rand(1, 1, 1, 1)
with manager:
out = model (x)

conv2_out = manager.get_recorder('conv2_rec').get_record_data()
print(conv2_out)

Out:
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tensor([[[[0.5543]11]1], grad_fn=<ThnnConv2DBackward®>)

Display output of toy_func

func_out = manager.get_recorder('func_rec').get_record_data()
print (func_out)

Out:

313167

7.5 Delivery

7.5.1 Introduction of Delivery

Delivery is a mechanism used in knowledge distillation, which is to align the intermediate results between the
teacher model and the student model by delivering and rewriting these intermediate results between them. As shown
in the figure below, deliveries can be used to:

¢ Deliver the output of a layer of the teacher model directly to a layer of the student model. In some knowledge
distillation algorithms, we may need to deliver the output of a layer of the teacher model to the student model
directly. For example, in LAD algorithm, the student model needs to obtain the label assignment of the teacher
model directly.

* Align the inputs of the teacher model and the student model. For example, in the MMClassification frame-
work, some widely used data augmentations such as mixup and CutMix are not implemented in Data Pipelines
but in forward_train, and due to the randomness of these data augmentation methods, it may lead to a gap
between the input of the teacher model and the student model.
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In general, the delivery mechanism allows us to deliver intermediate results between the teacher model and the student
model without adding additional code, which reduces the hard coding in the source code.

7.5.2 Usage of Delivery

Currently, we support two deliveries: FunctionOutputsDelivery and MethodOutputsDelivery, both of which
inherit from DistillDiliver. And these deliveries can be managed by DistillDeliveryManager or just be used

on their own.

Their relationship is shown below.
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DistillDeliveryManager

FunctionOutputsDelivery is used to align the function’s intermediate results between the teacher model and the

student model.

Note: When initializing FunctionOutputsDelivery, you need to pass func_path argument, which requires
extra attention. For example, anchor_inside_flags is a function in mmdetection to check whether the an-

chors are inside the border.

This function is in mmdet/core/anchor/utils.py and used in mmdet/models/

dense_heads/anchor_head. Then the func_path should be mmdet.models.dense_heads.anchor_head.
anchor_inside_flags but not mmdet.core.anchor.utils.anchor_inside_flags.
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Case 1: Delivery single function’s output from the teacher to the student.

import random
from mmrazor.core import FunctionOutputsDelivery

def toy_func() -> int:
return random.randint(®, 1000000)

delivery = FunctionOutputsDelivery(max_keep_data=1, func_path='toy_module.toy_func')

# override_data is False, which means that not override the data with
# the recorded data. So it will get the original output of toy_func
# in teacher model, and it is also recorded to be deliveried to the student.
delivery.override_data = False
with delivery:
output_teacher = toy_module.toy_func()

# override_data is True, which means that override the data with
# the recorded data, so it will get the output of toy_func
# in teacher model rather than the student's.
delivery.override_data = True
with delivery:

output_student = toy_module.toy_func()

print (output_teacher == output_student)

Out:

True

Case 2: Delivery multi function’s outputs from the teacher to the student.

If a function is executed more than once during the forward of the teacher model, all the outputs of this function will
be used to override function outputs from the student model

Note: Delivery order is first-in first-out.

delivery = FunctionOutputsDelivery(
max_keep_data=2, func_path='toy_module.toy_func')

delivery.override_data = False

with delivery:
outputl_teacher = toy_module.toy_func()
output2_teacher = toy_module.toy_func()

delivery.override_data = True

with delivery:
outputl_student = toy_module.toy_func()
output2_student = toy_module.toy_func()

(continues on next page)
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print (outputl_teacher == outputl_student and output2_teacher == output2_student)

Out:

True

MethodOutputsDelivery

MethodOutputsDelivery is used to align the method’s intermediate results between the teacher model and the stu-
dent model.

Case: Align the inputs of the teacher model and the student model

Here we use mixup as an example to show how to align the inputs of the teacher model and the student model.

* Without Delivery

# main.py
from mmcls.models.utils import Augments
from mmrazor.core import MethodOutputsDelivery

augments_cfg = dict(type='BatchMixup', alpha=1., num_classes=10, prob=1.0)
augments = Augments(augments_cfg)

imgs = torch.randn(2, 3, 32, 32)
label = torch.randint(®, 10, (2,))

imgs_teacher, label_teacher = augments(imgs, label)
imgs_student, label_student augments(imgs, label)

print(torch.equal (label_teacher, label_student))
print(torch.equal (imgs_teacher, imgs_student))

Out:

False

False

from mmcls.models.utils import Augments

from mmrazor.core import DistillDeliveryManager

The results are different due to the randomness of mixup.

* With Delivery

delivery = MethodOutputsDelivery(
max_keep_data=1, method_path="mmcls.models.utils.Augments.__call__")

delivery.override_data = False
with delivery:
imgs_teacher, label_teacher = augments(imgs, label)

(continues on next page)
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delivery.override_data = True
with delivery:
imgs_student, label_student = augments(imgs, label)

print(torch.equal (l1abel_teacher, label_student))
print(torch.equal (imgs_teacher, imgs_student))

Out:

True
True

The randomness is eliminated by using MethodOutputsDelivery

2.3 DistillDeliveryManager

DistillDeliveryManager is actually a context manager, used to manage delivers. @~ When entering the
DistillDeliveryManager, all delivers managed will be started

With the help of DistillDeliveryManager, we are able to manage several different DistillDeliveries with as little
code as possible, thereby reducing the possibility of errors.

Case: Manager deliveries with DistillDeliveryManager

from mmcls.models.utils import Augments
from mmrazor.core import DistillDeliveryManager

augments_cfg = dict(type='BatchMixup', alpha=1., num_classes=10, prob=1.0)
augments = Augments(augments_cfg)

distill_deliveries = [
ConfigDict(type="MethodOutputs', max_keep_data=1,
method_path="mmcls.models.utils.Augments.__call__")]

# instantiate DistillDeliveryManager
manager = DistillDeliveryManager(distill_deliveries)

imgs = torch.randn(2, 3, 32, 32)
label = torch.randint(0, 10, (2,))

manager.override_data = False
with manager:
imgs_teacher, label_teacher = augments(imgs, label)

manager.override_data = True
with manager:
imgs_student, label_student = augments(imgs, label)

print(torch.equal (label_teacher, label_student))
print(torch.equal (imgs_teacher, imgs_student))
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Out:

True
True
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CHAPTER
EIGHT

DEVELOPMENT TUTORIALS

8.1 Customize Architectures

Different from other tasks, architectures in MMRazor may consist of some special model components, such as search-
able backbones, connectors, dynamic ops. In MMRazor, you can not only develop some common model components
like other codebases of OpenMMLab, but also develop some special model components. Here is how to develop search-
able model components and common model components.

8.1.1 Develop searchable model components

1. Define a new backbone

Create a new file mmrazor/models/architectures/backbones/searchable_shufflenet_v2.py, class
SearchableShuffleNetV2 inherits from BaseBackBone of mmcls, which is the codebase that you will use to build
the model.

# Copyright (c) OpenMMLab. All rights reserved.
import copy
from typing import Dict, List, Optional, Sequence, Tuple, Union

import torch.nn as nn

from mmcls.models.backbones.base_backbone import BaseBackbone
from mmcv.cnn import ConvModule, constant_init, normal_init
from mmcv.runner import ModuleList, Sequential

from torch import Tensor

from torch.nn.modules.batchnorm import _BatchNorm

from mmrazor.registry import MODELS

@MODELS . register_module ()
class SearchableShuffleNetV2(BaseBackbone):

def __init__(self, ):
pass

def _make_layer(self, out_channels, num_blocks, stage_idx):
pass

def _freeze_stages(self):
pass

(continues on next page)
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def init_weights(self):
pass

def forward(self, x):
pass

def train(self, mode=True):
pass

2. Build the architecture of the new backbone based on arch_setting

@MODELS . register_module()
class SearchableShuffleNetV2(BaseBackbone):

def __init__(self,
arch_setting: List[List],
stem_multiplier: int = 1,
widen_factor: float = 1.0,
out_indices: Sequencel[int] = (4, ),
frozen_stages: int = -1,
with_last_layer: bool = True,
conv_cfg: Optional[Dict] = None,
norm_cfg: Dict = dict(type='BN'),
act_cfg: Dict = dict(type='RelLU'),
norm_eval: bool = False,
with_cp: bool = False,
init_cfg: Optional[Union[Dict, List[Dict]]] = None) -> None:
layers_nums = 5 if with_last_layer else 4
for index in out_indices:
if index not in range(0, layers_nums):
raise ValueError('the item in out_indices must in
f'range(®, 5). But received {index}')

self.frozen_stages = frozen_stages
if frozen_stages not in range(-1, layers_nums):
raise ValueError('frozen_stages must be in range(-1, 5).
f'But received {frozen_stages/')

v

super() .__init__(init_cfg)

self.arch_setting = arch_setting
self.widen_factor = widen_factor
self.out_indices = out_indices
self.conv_cfg = conv_cfg
self.norm_cfg = norm_cfg
self.act_cfg = act_cfg
self.norm_eval = norm_eval
self.with_cp = with_cp

last_channels = 1024
self.in_channels = 16 * stem_multiplier

(continues on next page)
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# build the first layer
self.convl = ConvModule(
in_channels=3,
out_channels=self.in_channels,
kernel_size=3,
stride=2,
padding=1,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg,
act_cfg=act_cfg)

# build the middle layers
self.layers = ModuleList()
for channel, num_blocks, mutable_cfg in arch_setting:
out_channels = round(channel * widen_factor)
layer = self._make_layer(out_channels, num_blocks,
copy .deepcopy (mutable_cfg))
self.layers.append(layer)

# build the last layer
if with_last_layer:
self.layers.append(

ConvModule(
in_channels=self.in_channels,
out_channels=1ast_channels,
kernel_size=1,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg,
act_cfg=act_cfg))

3. Implement_make_layer with mutable_cfg

@MODELS . register_module ()
class SearchableShuffleNetV2(BaseBackbone) :

def _make_layer(self, out_channels: int, num_blocks: int,
mutable_cfg: Dict) -> Sequential:
"""Stack mutable blocks to build a layer for ShuffleNet V2.

Note:
Here we use “"module_kwargs'™ to pass dynamic parameters such as
“‘in_channels™, “out_channels™ and “‘stride’
to build the mutable.

Args:

out_channels (int): out_channels of the block.

num_blocks (int): number of blocks.

mutable_cfg (dict): Config of mutable.
Returns:

mmcv.runner.Sequential: The layer made.

i

layers = []

(continues on next page)
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for i in range(num_blocks):
stride = 2 if i == 0 else 1

mutable_cfg.update(
module_kwargs=dict(
in_channels=self.in_channels,
out_channels=out_channels,
stride=stride))
layers.append (MODELS.build(mutable_cfg))
self.in_channels = out_channels

return Sequential (*layers)

4. Implement other common methods
You can refer to the implementation of ShuffleNetV2 in mmcls for finishing other common methods.
5. Import the module

You can either add the following line to mmrazor/models/architectures/backbones/__init__.py

from .searchable_shufflenet_v2 import SearchableShuffleNetV2

all__ = ['SearchableShuffleNetV2']

or alternatively add

custom_imports = dict(
imports=[ 'mmrazor.models.architectures.backbones.searchable_shufflenet_v2'],
allow_failed_imports=False)

to the config file to avoid modifying the original code.

6. Use the backbone in your config file

architecture = dict(
type=xxx,
model=dict(

backbone=dict(
type="mmrazor.SearchableShuffleNetV2',
argl=xxx,
arg2=xxx) ,
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8.1.2 Develop common model components

Here we show how to add a new backbone with an example of xxxNet.
1. Define a new backbone

Create a new file mmrazor/models/architectures/backbones/xxxnet.py, then implement the class xxxNet.

from mmengine.model import BaseModule
from mmrazor.registry import MODELS

@MODELS . register_module ()
class xxxNet(BaseModule):

def __init__(self, argl, arg2, init_cfg=None):
super().__init__(init_cfg=init_cfg)
pass

def forward(self, x):
pass

2. Import the module

You can either add the following line to mmrazor/models/architectures/backbones/__init__.py

from .xxxnet import xxxNet

all__ = ["xxxNet']

or alternatively add

custom_imports = dict(
imports=[ 'mmrazor.models.architectures.backbones.xxxnet'],
allow_failed_imports=False)

to the config file to avoid modifying the original code.

3. Use the backbone in your config file

architecture = dict(
type=xxx,
model=dict(

backbone=dict(
type="xxxNet',
argl=xxx,
arg2=xxx),

How to add other model components is similar to backbone’s. For more details, please refer to other codebases’ docs.
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8.2 Customize NAS algorithms

Here we show how to develop new NAS algorithms with an example of SPOS.
1. Register a new algorithm

Create a new file mmrazor/models/algorithms/nas/spos.py, class SPOS inherits from class BaseAlgorithm

from mmrazor.registry import MODELS
from ..base import BaseAlgorithm

@MODELS.register_module()
class SPOS(BaseAlgorithm):
def __init__(self, **kwargs):
super (SPOS, self).__init__(**kwargs)
pass

def loss(self, batch_inputs, data_samples):
pass

2. Develop new algorithm components (optional)

SPOS can directly use class OneShotModuleMutator as core functions provider. If mutators provided in MMRazor
don’t meet your needs, you can develop new algorithm components for your algorithm like OneShotModuleMutator,
we will take OneShotModuleMutator as an example to introduce how to develop a new algorithm component:

a. Create a new file mmrazor/models/mutators/module_mutator/one_shot_module_mutator.py, class
OneShotModuleMutator inherits from class ModuleMutator

b. Finish the functions you need in OneShotModuleMutator, eg: sample_choices, set_choices and so on.

from mmrazor.registry import MODELS
from .module_mutator import ModuleMutator

@MODELS .register_module()
class OneShotModuleMutator (ModuleMutator) :

def __init__(self, **kwargs):
super().__init__ (**kwargs)

def sample_choices(self) -> Dict[int, Any]:
pass

def set_choices(self, choices: Dict[int, Any]) -> None:
pass

@property
def mutable_class_type(self):
return OneShotMutableModule

c. Import the new mutator

You can either add the following line to mmrazor/models/mutators/__init__.py

from .module_mutator import OneShotModulelMutator
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or alternatively add

custom_imports = dict(
imports=[ 'mmrazor.models.mutators.module_mutator.one_shot_module_mutator'],
allow_failed_imports=False)

to the config file to avoid modifying the original code.

d. Use the algorithm component in your config file

mutator=dict(type="mmrazor.OneShotModuleMutator")

For further information, please refer to Mutator for more details.
3. Rewrite its loss function.

Develop key logic of your algorithm in functionloss. When having special steps to optimize, you should rewrite the
function train_step.

@MODELS .register_module()
class SPOS(BaseAlgorithm):
def __init__(self, **kwargs):
super (SPOS, self).__init__(**kwargs)
pass

def sample_subnet(self):
pass

def set_subnet(self, subnet):
pass

def loss(self, batch_inputs, data_samples):
if self.is_supernet:
random_subnet = self.sample_subnet()
self.set_subnet(random_subnet)
return self.architecture(batch_inputs, data_samples, mode='loss')
else:
return self.architecture(batch_inputs, data_samples, mode='loss')

4. Add your custom functions (optional)

After finishing your key logic in function loss, if you also need other custom functions, you can add them in class
SPOS as follows.

5. Import the class

You can either add the following line to mmrazor/models/algorithms/nas/__init__.py

from .spos import SPOS

__all__ = ['SPOS']

or alternatively add

custom_imports = dict(
imports=[ 'mmrazor.models.algorithms.nas.spos'],
allow_failed_imports=False)
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to the config file to avoid modifying the original code.

6. Use the algorithm in your config file

model = dict(
type="mmrazor.SPOS"',
architecture=supernet,
mutator=dict(type="mmrazor.OneShotModuleMutator'))

8.3 Customize pruning algorithms

Here we show how to develop new Pruning algorithms with an example of AutoSlim.
1. Register a new algorithm

Create a new file mmrazor/models/algorithms/prunning/autoslim.py, class AutoSlim inherits from class
BaseAlgorithm.

from mmrazor.registry import MODELS
from .base import BaseAlgorithm

@MODELS . register_module ()
class AutoSlim(BaseAlgorithm):
def __init__(self,
mutator,
distiller,
architecture,
data_preprocessor,
num_random_samples = 2,
init_cfg = None) -> None:
super() .__init__ (**kwargs)
pass

def train_step(self, data, optimizer):
pass

2. Develop new algorithm components (optional)

AutoSlim can directly use class OneShotChannelMutator as core functions provider. If it can not meet your
needs, you can develop new algorithm components for your algorithm like OneShotChannalMutator. We will take
OneShotChannelMutator as an example to introduce how to develop a new algorithm component:

a. Create a new file mmrazor/models/mutators/channel_mutator/one_shot_channel_mutator.py, class
OneShotChannelMutator can inherits from ChannelMutator.

b. Finish the functions you need, eg: build_search_groups, set_choices, sample_choices and so on

from mmrazor.registry import MODELS
from .channel_mutator import ChannelMutator

@MODELS .register_module()
class OneShotChannelMutator (ChannelMutator):
def __init__(self, **kwargs):
super().__init__ (**kwargs)

(continues on next page)
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def sample_choices(self):
pass

def set_choices(self, choice_dict):
pass

# supernet is a kind of architecture in ‘mmrazor/models/architectures/”
def build_search_groups(self, supernet):
pass

c. Import the module in mmrazor/models/mutators/channel_mutator/__init__.py

from .one_shot_channel_mutator import OneShotChannelMutator

_,all__ = [..., 'OneShotChannelMutator']

3. Rewrite its train_step

Develop key logic of your algorithm in functiontrain_step

from mmrazor.registry import MODELS
from ..base import BaseAlgorithm

@ALGORITHMS .register_module()
class AutoSlim(BaseAlgorithm):
def __init__(self,
mutator,
distiller,
architecture,
data_preprocessor,
num_random_samples = 2,
init_cfg = None) -> None:
super (AutoSlim, self).__init__ (**kwargs)
pass

def train_step(self, data: List[dict],
optim_wrapper: OptimWrapper) -> Dict[str, torch.Tensor]:

def distill_step(
batch_inputs: torch.Tensor, data_samples: List[BaseDataElement]
) -> Dict[str, torch.Tensor]:

return subnet_losses
batch_inputs, data_samples = self.data_preprocessor(data, True)

total_losses = dict()
for kind in self.sample_kinds:
# update the max subnet loss.
if kind == 'max':
self.set_max_subnet()
with optim_wrapper.optim_context(

(continues on next page)
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self), self.distiller.teacher_recorders: # type: ignore
max_subnet_losses = self(batch_inputs, data_samples, mode='loss')
parsed_max_subnet_losses, _ = self.parse_losses(max_subnet_losses)
optim_wrapper.update_params(parsed_max_subnet_losses)
total_losses.update(add_prefix(max_subnet_losses, 'max_subnet'))
# update the min subnet loss.
elif kind == 'min':
self.set_min_subnet()
min_subnet_losses = distill_step(batch_inputs, data_samples)
total_losses.update(add_prefix(min_subnet_losses, 'min_subnet'))
# update the random subnets loss.
elif 'random' in kind:
self.set_subnet(self.sample_subnet())
random_subnet_losses = distill_step(batch_inputs, data_samples)
total_losses.update(
add_prefix(random_subnet_losses, f'{kind}_subnet'))

return total_losses

4. Add your custom functions (optional)

After finishing your key logic in function train_step, if you also need other custom functions, you can add them in
class AutoSlim.

5. Import the class

You can either add the following line to mmrazor/models/algorithms/__init__.py

from .pruning import AutoSlim

all__ = [..., "AutoSlim']

Or alternatively add

custom_imports = dict(
imports=['mmrazor.models.algorithms.pruning.autoslim'],
allow_failed_imports=False)

to the config file to avoid modifying the original code.

6. Use the algorithm in your config file

model = dict(
type="AutoSlim"',
architecture=.. .,
mutator=dict(type="'OneShotChannelMutator', ...),

)
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8.4 Customize KD algorithms

Here we show how to develop new KD algorithms with an example of SingleTeacherDistill.
1. Register a new algorithm

Create a new file mmrazor/models/algorithms/distill/configurable/single_teacher_distill.py, class
SingleTeacherDistill inherits from class BaseAlgorithm

from mmrazor.registry import MODELS
from ..base import BaseAlgorithm

@ALGORITHMS .register_module()
class SingleTeacherDistill (BaseAlgorithm):
def __init__(self, use_gt, **kwargs):
super(Distillation, self).__init__(**kwargs)
pass

def train_step(self, data, optimizer):
pass

2. Develop connectors (Optional) .

Take ConvModuleConnector as an example.

from mmrazor.registry import MODELS
from .base_connector import BaseConnector

@MODELS .register_module()

class ConvModuleConnector(BaseConnector):
def __init__(self, in_channel, out_channel, kernel_size = 1, stride = 1):

def forward_train(self, feature):

3. Develop distiller.

Take ConfigurableDistiller as an example.

from .base_distiller import BaseDistiller
from mmrazor.registry import MODELS

@MODELS .register_module()
class ConfigurableDistiller(BaseDistiller):
def __init__(self,

student_recorders = None,
teacher_recorders = None,
distill_deliveries = None,
connectors = None,
distill_losses = None,
loss_forward_mappings = None):

(continues on next page)
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def build_connectors(self, connectors):

def build_distill_losses(self, losses):

def compute_distill_losses(self):

4. Develop custom loss (Optional).

Here we take L1Loss as an example. Create a new file in mmrazor/models/losses/11_loss.py.

from mmrazor.registry import MODELS

@MODELS .register_module()
class LlLoss(nn.Module):
def __init__(
self,
loss_weight: float = 1.0,
size_average: Optional[bool] = None,
reduce: Optional[bool] = None,
reduction: str = 'mean',
) -> None:
super().__init__ Q)

def forward(self, s_feature, t_feature):
loss = F.11_loss(s_feature, t_feature, self.size_average, self.reduce,
self.reduction)
return self.loss_weight * loss

5. Import the class

You can either add the following line to mmrazor/models/algorithms/__init__.py

from .single_teacher_distill import SingleTeacherDistill

all__ = [..., 'SingleTeacherDistill']

or alternatively add

custom_imports = dict(
imports=[ 'mmrazor.models.algorithms.distill.configurable.single_teacher_distill'],
allow_failed_imports=False)

to the config file to avoid modifying the original code.

6. Use the algorithm in your config file

algorithm = dict(
type='Distill’,
distiller=dict(type='SingleTeacherDistill', ...),
# you can also use your new algorithm components here

(continues on next page)
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8.5 Customize Quantization algorithms

Here we show how to develop new QAT algorithms with an example of LSQ on OpenVINO backend.

This document is mainly aimed at QAT because the ptq process is relatively fixed and the components we provide
can meet most of the needs. We will first give an overview of the overall required development components, and then
introduce the specific implementation step by step.

8.5.1 Overall

In the mmrazor quantization pipeline, in order to better support the openmmlab environment, we have configured most
of the code modules for users. You can configure all the components directly in the config file. How to configure them
can be found in our file.

global_qconfig = dict(
w_observer=dict(),
a_observer=dict(),
w_fake_quant=dict(),
a_fake_quant=dict(),
w_gscheme=dict(),
a_gscheme=dict(),
)
model = dict(
type="mmrazor.MMArchitectureQuant',
architecture=resnet,
quantizer=dict(
type="mmrazor.OpenvinoQuantizer',
global_gconfig=global_gconfig,
tracer=dict()))
train_cfg = dict(type="mmrazor.LSQEpochBasedLoop')

For algorithm and tracer, we recommend that you use the default configurations MMArchitectureQuant and
CustomTracer provided by us. These two module operators are specially built for the openmmlab environment, while
other modules can refer to the following steps and choose or develop new operators according to your needs.

To adapt to different backends, you need to select a different quantizer.
To develop new quantization algorithms, you need to define new observer and fakequant.

If the existing 1oop does not meet your needs, you may need to make some changes to the existing loop based on your
algorithm.

8.5. Customize Quantization algorithms 71



https://github.com/open-mmlab/mmrazor/blob/quantize/configs/quantization/qat/minmax_openvino_resnet18_8xb32_in1k.py

mmrazor

8.5.2 Detailed steps

1. Select a quantization algorithm

We recommend that you directly use theMMArchitectureQuant in mmrazor/models/algorithms/
quantization/mm_architecture.py.The class MMArchitectureQuant inherits from class BaseAlgorithm.

This structure is built for the model in openmmlab. If you have other requirements, you can also refer to this document
to design the overall framework.

2. Select quantizer

At present, the quantizers we support are NativeQuantizer, OpenVINOQuantizer, TensorRTQuantizer and
AcademicQuantizer in mmrazor/models/quantizers/. AcademicQuantizer and NativeQuantizer inherit
from class BaseQuantizer in mmrazor/models/quantizers/base.py:

class BaseQuantizer(BaseModule):

def __init__(self, tracer):
super().__init__Q
self.tracer = TASK_UTILS.build(tracer)

@abstractmethod

def prepare(self, model, graph_module):
""tmp, """
pass

def swap_ff_with_fxff(self, model):
pass

NativeQuantizer is the operator we developed to adapt to the environment of mmrazor according to pytorch’s official
quantization logic. AcademicQuantizer is an operator designed for academic research to give users more space to
operate.

The class OpenVINOQuantizer and TensorRTQuantizer inherits from class NativeQuantize. They adapted
OpenVINO and TensorRTbackend respectively. You can also try to develop a quantizer based on other backends ac-
cording to your own needs.

3. Select tracer

Tracer we use CustomTracer in mmrazor/models/task_modules/tracer/fx/custom_tracer.py. You can in-
herit this class and customize your own tracer.

4. Develop new fakequant method(optional)

You can use fakequants provided by pytorch in mmrazor/models/fake_quants/torch_fake_quants.py as core
functions provider. If you want to use the fakequant methods from other papers, you can also define them yourself.
Let’s take 1sq as an example as follows:

a.Create a new file mmrazor/models/fake_quants/lsq.py, class LearnableFakeQuantize inherits from class
FakeQuantizeBase.

b. Finish the functions you need, eg: observe_quant_params, calculate_gparams and so on.

from mmrazor.registry import MODELS
from torch.ao.quantization import FakeQuantizeBase

@MODELS .register_module()
class LearnableFakeQuantize(FakeQuantizeBase):
def __init__(self,
observer,
quant_min=0,

(continues on next page)
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quant_max=255,
scale=1.,
zero_point=0.,
use_grad_scaling=True,
zero_point_trainable=False,
“*observer_kwargs):
super (LearnableFakeQuantize, self).__init__Q)
pass

def observe_quant_params(self):
pass

def calculate_gparams(self):
pass

def forward(self, X):
pass

c.Import the module in mmrazor/models/fake_quants/__init__.py

from .lsq import LearnableFakeQuantize

__all__ = ['LearnableFakeQuantize']

5. Develop new observer(optional)

You can directly use observers provided by pytorch in mmrazor/models/observers/torch_observers.py or use
observers customized by yourself. Let’s take LSQObserver as follows:

a.Create a new observer file mmrazor/models/observers/1sq.py, class LSQObserver inherits from class
MinMaxObserver and LSQObserverMixIn. These two observers can calculate zero_point and scale, respectively.

b.Finish the functions you need, eg: calculate_gparams and so on.

from mmrazor.registry import MODELS
from torch.ao.quantization.observer import MinMaxObserver

class LSQObserverMixIn:
def __init__(self):
self.tensor_norm = None

@torch.jit.export

def _calculate_scale(self):
scale = 2 * self.tensor_norm / math.sqrt(self.quant_max)
sync_tensor(scale)
return scale

@MODELS . register_module ()
class LSQObserver (MinMaxObserver, LSQObserverMixIn):
"""[.SQ observer.
Paper: Learned Step Size Quantization. <https://arxiv.org/abs/1902.08153>
def __init__(self, *args, **kwargs):
MinMaxObserver.__init__(self, *args, **kwargs)

(continues on next page)
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LSQObserverMixIn.__init__(self)

def forward(self, x_orig):
"""Records the running minimum, maximum and tensor_norm of x ."""
if x_orig.numel() ==

return x_orig

x = x_orig.detach() # avoid keeping autograd tape
X = x.to(self.min_val.dtype)
self.tensor_norm = x.abs().mean()
min_val_cur, max_val_cur = torch.aminmax(x)
min_val = torch.min(min_val_cur, self.min_val)
max_val = torch.max(max_val_cur, self.max_val)
self.min_val.copy_(min_val)
self.max_val.copy_(max_val)
return x_orig

@torch.jit.export

def calculate_gparams(self):
"""Calculates the quantization parameters.
_, zero_point = MinMaxObserver.calculate_gparams(self)
scale = LSQObserverMixIn._calculate_scale(self)
return scale, zero_point

mirn

c.Import the module in mmrazor/models/observers/__init__.py

from .lsq import LSQObserver

all__ = ['LSQObserver']

6. Select loop or develop new loop

At present, the QAT loops we support are PTQLoop and QATEpochBasedLoop, in mmrazor/engine/runner/
quantization_loops.py. We can develop a new LSQEpochBasedLoop inherits from class QATEpochBasedLoop
and finish the functions we need in LSQ method.

from mmengine.runner import EpochBasedTrainLoop

@LOOPS .register_module()
class LSQEpochBasedLoop(QATEpochBasedLoop) :
def __init__(
self,
runner,
dataloader: Union[Dataloader, Dict],
max_epochs: int,
val_begin: int = 1,
val_interval: int = 1,
freeze_bn_begin: int = -1,
dynamic_intervals: Optional[List[Tuple[int, int]]] = None) -> None:
super().__init__(

runner,
dataloader,
max_epochs,
val_begin,

(continues on next page)
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val_interval,
freeze_bn_begin=freeze_bn_begin,
dynamic_intervals=dynamic_intervals)

self.is_first_batch = True

def prepare_for_run_epoch(self):
pass

def prepare_for_val(self):
pass

def run_epoch(self) -> None:
pass

And then Import the module in mmrazor/engine/runner/__init__.py

from .quantization_loops import LSQEpochBasedLoop

all__ = ['LSQEpochBasedLoop']

7. Use the algorithm in your config file

After completing the above steps, we have all the components of the qat algorithm, and now we can combine them in
the config file.

a.First, _base_ stores the location of the model that needs to be quantized.

b.Second, configure observer,fakequant and gscheme in global_gconfig in detail. You can configure the required
quantization bit width and quantization methods in gscheme, such as symmetric quantization or asymmetric quantiza-
tion.

¢.Third, build the whole mmrazor model in model.

d.Finally, complete all the remaining required configuration files.

_base_ = ['mmcls::resnet/resnetl18_8xbl6_cifarl0.py"']

global_qconfig = dict(
w_observer=dict (type="mmrazor.LSQPerChannelObserver'),
a_observer=dict(type="mmrazor.LSQObserver'),
w_fake_quant=dict(type="mmrazor.LearnableFakeQuantize'),
a_fake_quant=dict (type="mmrazor.LearnableFakeQuantize'),
w_gscheme=dict(

gdtype="qint8', bit=8, is_symmetry=True, is_symmetric_range=True),

a_gscheme=dict(gqdtype="quint8', bit=8, is_symmetry=True),

)

model = dict(
_delete_=True,
_scope_='"mmrazor"',
type="MMArchitectureQuant',
data_preprocessor=dict(
type="mmcls.ClsDataPreprocessor',
num_classes=1000,

(continues on next page)

8.5. Customize Quantization algorithms 75




mmrazor

(continued from previous page)

# RGB format normalization parameters
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
# convert image from BGR to RGB
to_rgb=True),
architecture=resnet,
float_checkpoint=float_ckpt,
quantizer=dict(
type="mmrazor.OpenVINOQuantizer',
is_gat=True,
global_gconfig=global_gconfig,
tracer=dict(
type="mmrazor.CustomTracer',
skipped_methods=[
'mmcls.models.heads.ClsHead._get_loss',
'mmcls.models.heads.ClsHead._get_predictions

DM

# learning policy
optim_wrapper = dict()
param_scheduler = dict()
model_wrapper_cfg = dict(Q)

# train, val, test setting

train_cfg = dict(type="mmrazor.LSQEpochBasedLoop')
val_cfg = dict(Q

test_cfg = val_cfg

8.6 Customize mixed algorithms

Here we show how to customize mixed algorithms with our algorithm components. We take AutoSlim as an example.

Note: Why is AutoSlim a mixed algorithm?

In AutoSlim, the sandwich rule and the inplace distillation will be introduced to enhance the training process, which is
called as the slimmable training. The sandwich rule means that we train the model at smallest width, largest width and
(n 2) random widths, instead of n random widths. And the inplace distillation means that we use the predicted label
of the model at the largest width as the training label for other widths, while for the largest width we use ground truth.
So both the KD algorithm and the pruning algorithm are used in AutoSlim.

1. Register a new algorithm

Create a new file mmrazor/models/algorithms/nas/autoslim.py, class AutoSlim inherits from class
BaseAlgorithm. You need to build the KD algorithm component (distiller) and the pruning algorithm component
(mutator) because AutoSlim is a mixed algorithm.

Note: You can also inherit from the existing algorithm instead of BaseAlgorithm if your algorithm is similar to the
existing algorithm.
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Note:  You can choose existing algorithm components in MMRazor, such as OneShotChannelMutator and
ConfigurableDistiller in AutoSlim.

If these in MMRazor don’t meet your needs, you can customize new algorithm components for your algorithm. Refer-
ence is as follows:

Customize NAS algorithms Customize Pruning algorithms Customize KD algorithms

# Copyright (c) OpenMMLab. All rights reserved.
from typing import Dict, List, Optional, Union
import torch

from torch import nn

from mmrazor.models.distillers import ConfigurableDistiller
from mmrazor.models.mutators import OneShotChannelMutator
from mmrazor.registry import MODELS

from ..base import BaseAlgorithm

VALID_MUTATOR_TYPE = Union[OneShotChannelMutator, Dict]
VALID_DISTILLER_TYPE = Union[ConfigurableDistiller, Dict]

@MODELS . register_module()
class AutoSlim(BaseAlgorithm):
def __init__(self,
mutator: VALID_MUTATOR_TYPE,
distiller: VALID_DISTILLER_TYPE,
architecture: Union[BaseModel, Dict],
data_preprocessor: Optional[Union[Dict, nn.Module]] = None,
num_random_samples: int = 2,
init_cfg: Optional[Dict] = None) -> None:
super().